[NIPS2017]“深度高斯模型”可能为深度学习的可解释性提供概率形式的理论指导?亚马逊机器学习专家最新报告 专知 [导读]在NIPS 2017上,亚马逊机器学习专家Neil Lawrence在12月4日在长滩现场进行了一场“基于高斯模型的深度概率模型”的演讲报告.这场报告Neil Lawrence形象化地讲解了使用高斯过程来建模深度网络,并且深入浅出地讲解了什么是机器学习,不确定性的含义以及深度神经网络和高斯过程的一些关联等等,PPT内容干货很多,是学习机器学习概率理论的好文,后续专知会持续…
几乎每一次神经网络的再流行,都会出现:推进人工智能的梦想之说. 前言: Marr视觉分层理论 Marr视觉分层理论(百度百科):理论框架主要由视觉所建立.保持.并予以解释的三级表象结构组成,这就是:         a.基元图(the primal sketch)-由于图像的密度变化可能与物体边界这类具体的物理性质相对应,因此它主要描述图像的密度变化及其局部几何关系.         b. 2.5维图(2.5 Dimensional sketch)-以观察者为中心,描述可见表面的方位.轮廓.深度…
第二课 传统神经网络 <深度学习>整体结构: 线性回归 -> 神经网络 -> 卷积神经网络(CNN)-> 循环神经网络(RNN)- LSTM 目标分类(人脸识别,物品识别,场景识别,文字识别),目标检测(安防,自动驾驶),视频分类(视频检索),语句生成(自动翻译,智能对话) 提纲: 1. 神经网络起源:线性回归 2. 从线性到非线性 3. 神经网络的构建 4. 神经网络的“配件”  期待目标: 1. 了解从线性到非线性回归的转化 2. 明白如何构建神经网络,了解不同激励函数的…
本文介绍如何将基于深度学习的目标检测算法应用到具体的项目开发中,体现深度学习技术在实际生产中的价值,算是AI算法的一个落地实现.本文算法部分可以参见前面几篇博客: [AI开发]Python+Tensorflow打造自己的计算机视觉API服务 [AI开发]基于深度学习的视频多目标跟踪实现 [AI开发]视频多目标跟踪高级版(离自动驾驶又‘近’了一点点) [AI开发]centOS7.5上基于keras/tensorflow深度学习环境搭建 背景 交通领域是深度学习技术可以发挥强大作用的一个领域.道路交…
这篇文章详细介绍在centOS7.5上搭建基于keras/tensorflow的深度学习环境,该环境可用于实际生产.本人现在非常熟练linux(Ubuntu/centOS/openSUSE).windows上该环境的搭建 :) 前面三篇博客代码实现均基于该环境(开发或者测试过): [AI开发]Python+Tensorflow打造自己的计算机视觉API服务 [AI开发]基于深度学习的视频多目标跟踪实现 [AI开发]视频多目标跟踪高级版 运行环境 1) centOS 7.5 ,不要安装GUI桌面:…
目前深度学习应用广发, 其中 AI 推理的在线服务是其中一个重要的可落地的应用场景.本文将为大家介绍使用函数计算部署深度学习 AI 推理的最佳实践,  其中包括使用 FUN 工具一键部署安装第三方依赖.一键部署.本地调试以及压测评估, 全方位展现函数计算的开发敏捷特性.自动弹性伸缩能力.免运维和完善的监控设施. 1.1 DEMO 概述 通过上传一个猫或者狗的照片, 识别出这个照片里面的动物是猫还是狗 DEMO 示例效果入口: http://sz.mofangdegisn.cn DEMO 示例工程…
背景 近几年以深度学习技术为核心的人工智能得到广泛的关注,无论是学术界还是工业界,它们都把深度学习作为研究应用的焦点.而深度学习技术突飞猛进的发展离不开海量数据的积累.计算能力的提升和算法模型的改进.本文主要介绍深度学习技术在文本领域的应用,文本领域大致可分为4个维度:词.句子.篇章.系统级应用. 词.分词方面,从最经典的前后向匹配到条件随机场(Conditional Random Field,CRF)序列标注,到现在Bi-LSTM+CRF模型,已经不需要设计特征,从字粒度就能做到最好的序列标注…
导语 2016年,继虚拟现实(VR)之后,人工智能(AI)的概念全面进入大众的视野.谷歌,微软,IBM等科技巨头纷纷重点布局,AI 貌似将成为互联网的下一个风口. 很多开发同学,对人工智能非常感兴趣,确不知从何入手进行学习,精神哥也同样被这个问题困扰.直至看见汉彬同学的这篇文章,豁然开朗,让我坚定地迈出了成为"AI 工程师"的第一步! 本文作者:腾讯QQ会员技术团队-徐汉彬 微信公众号:小时光茶社 一.人工智能和新科技革命 2017年,围棋界发生了一件比较重要的事,Master(Alp…
讲授机器学习面临的挑战.人工特征的局限性.为什么选择神经网络.深度学习的诞生和发展.典型的网络结构.深度学习在机器视觉.语音识别.自然语言处理.推荐系统中的应用 大纲: 机器学习面临的挑战 特征工程的局限性 机器学习算法的瓶颈 为什么选择了神经网络 深度学习的基本思路 深度学习的诞生历程 深度学习得以发展的因素 典型的网络结构 深度学习的发展现状 在机器视觉中的应用 在语音识别中的应用 在自然语言处理中的应用 在推荐系统中的应用 深度强化学习简介 本集总结 机器学习面临的挑战: 经典的机器学习算…
[转:http://www.csdn.net/article/2015-07-07/2825150] 在深度学习(Deep Learning)的热潮下,Caffe作为一个高效.实用的深度学习框架受到了广泛的关注.了解Caffe研发的背景.愿景.技术特色.路线图及其开发者的理念,对于我们选择合适的工具更好地进行深度学习应用的迭代开发大有裨益.<程序员>记者近日深度对话Caffe作者贾扬清,剖析Caffe的起源.目标.差异性.现存的一些问题和改进工作,以及未来的规划. 起源故事 <程序员&g…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引擎的引擎,基本所有的深度学习计算平台都采用GPU加速.同时,深度学习已成为GPU提供商NVIDIA的一个新的战略方向,以及3月份的GTC 2015的绝对主角. 那么,GPU用于深度学习的最新进展如何?这些进展对深度学习框架有哪些影响?深度学习开发者应该如何发挥GPU的潜力?GPU与深度学习结合的前景…
  本文简单介绍什么是贝叶斯深度学习(bayesian deep learning),贝叶斯深度学习如何用来预测,贝叶斯深度学习和深度学习有什么区别.对于贝叶斯深度学习如何训练,本文只能大致给个介绍.(不敢误人子弟)   在介绍贝叶斯深度学习之前,先来回顾一下贝叶斯公式. 贝叶斯公式 \[p(z|x) = \frac{p(x, z)}{p(x)} = \frac{p(x|z)p(z)}{p(x)} \tag{1}\] 其中,\(p(z|x)\) 被称为后验概率(posterior),\(p(x,…
20个令人惊叹的深度学习应用(Demo+Paper+Code) 从计算机视觉到自然语言处理,在过去的几年里,深度学习技术被应用到了数以百计的实际问题中.诸多案例也已经证明,深度学习能让工作比之前做得更好. 今天,量子位为大家收集了20个深度学习方面的优秀应用——当然,这份榜单可能并不详尽,但相信看过之后,你对这项技术在某些领域的潜力会有更清晰的认识. 针对每个应用,我们还尽量收集了相关的Demo.Paper和Code等信息. 1.Face2Face:扮演特朗普 斯坦福大学的一个小组做了一款名为F…
写在前面:据说下周就要xxxxxxxx, 吓得本宝宝赶紧找些广告的东西看看 gbdt+lr的模型之前是知道怎么搞的,dnn+lr的模型也是知道的,但是都没有试验过 深度学习在美团点评推荐平台排序中的运用 原创 2017-07-28 潘晖 美团点评技术团队 美团点评作为国内最大的生活服务平台,业务种类涉及食.住.行.玩.乐等领域,致力于让大家吃得更好,活得更好,有数亿用户以及丰富的用户行为.随着业务的飞速发展,美团点评的用户和商户数在快速增长.在这样的背景下,通过对推荐算法的优化,可以更好的给用户…
人工智能 什么是人工智能.机器学习与深度学习(见图1-1)?这三者之间有什么关系?…
一.深度学习的发展历程 深度学习的起源阶段 深度学习的发展阶段 深度学习的爆发阶段 二.深度学习的应用 自然语言处理 语音识别与合成 图像领域 三.参考文献   一.深度学习的发展历程 作为机器学习最重要的一个分支,深度学习近年来发展迅猛,在国内外都引起了广泛的关注.然而深度学习的火热也不是一时兴起的,而是经历了一段漫长的发展史.接下来我们简单了解一下深度学习的发展历程. 深度学习的起源阶段 1943年,心里学家麦卡洛克和数学逻辑学家皮兹发表论文<神经活动中内在思想的逻辑演算>[1],提出了M…
本文适合有 Java 基础的人群 作者:DJL-Keerthan&Lanking HelloGitHub 推出的<讲解开源项目> 系列.这一期是由亚马逊工程师:Keerthan Vasist,为我们讲解 DJL(完全由 Java 构建的深度学习平台)系列的第 4 篇. 一.前言 很长时间以来,Java 都是一个很受企业欢迎的编程语言.得益于丰富的生态以及完善维护的包和框架,Java 拥有着庞大的开发者社区.尽管深度学习应用的不断演进和落地,提供给 Java 开发者的框架和库却十分短缺.…
新增了七个教程: PyTorch 中文官方教程 1.7 学习 PyTorch PyTorch 深度学习:60 分钟的突击 张量 torch.autograd的简要介绍 神经网络 训练分类器 通过示例学习 PyTorch 热身:NumPy PyTorch:张量 PyTorch:张量和 Autograd PyTorch:定义新的 Autograd 函数 PyTorch:nn PyTorch:optim PyTorch:自定义nn模块 PyTorch:控制流 + 权重共享 torch.nn到底是什么?…
如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识. 什么是深度神经网络? 神经网络包含三层:输入层(X).隐藏层和输出层:f(x) 每层之间每个节点都是完全连接的,其中包含权重(W).每层都存在一个偏移值(b). 每一层节点的计算方式如下: 其中g()代表激活函数,o()代表softmax输出函数. 使用Flow Graph的方式来表达如何正向推导神经网络,可以表达如下: x: 输入值 a(x):表示每个隐藏层的pre-acti…
本文由云+社区发表 作者:董超 导语:现在人工智能是个大热点,而人工智能离不开机器学习,机器学习中深度学习又是比较热门的方向,本系列文章就从实战出发,介绍下如何使用MXnet进行深度学习~ 既然是实战而且本文是入门级别的我们就不讲那么多大家都听不懂的数学公式啦- 0x00 深度学习简介 虽然吧,我们不讲哪些深奥的数学原理,但是基本的原理还是要掌握下的- 在介绍深度学习之前我们要先了解两个概念,机器学习和神经网络. 机器学习: 在介绍深度学习之前,我们先简单介绍下机器学习,我们引用下维基百科上机器…
Caffe 全称为 Convolutional Architecture for Fast Feature Embedding,是一个被广泛使用的开源深度学习框架(在 TensorFlow 出现之前一直是深度学习领域 GitHub star 最多的项目),目前由伯克利视觉学中心(Berkeley Vision and Learning Center,BVLC)进行维护.Caffe 的创始人是加州大学伯克利的 Ph.D.贾扬清,他同时也是TensorFlow的作者之一,曾工作于 MSRA.NEC…
还未完全写完,本人会一直持续更新!~ 各大深度学习框架总结和比较 各个开源框架在GitHub上的数据统计,如下表: 主流深度学习框架在各个维度的评分,如下表: Caffe可能是第一个主流的工业级深度学习工具,它开始于2013年底,具有出色的卷积神经网络实现.在计算机视觉领域Caffe依然是最流行的工具包,它有很多扩展,但是由于一些遗留的架构问题,它对递归网络和语言建模的支持很差.此外,在Caffe中图层需要使用C++定义,而网络则使用Protobuf定义. CNTK由深度学习热潮的发起演讲人创建…
http://www.52nlp.cn/%E6%96%AF%E5%9D%A6%E7%A6%8F%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E4%B8%8Enlp%E7%AC%AC%E5%9B%9B%E8%AE%B2%E8%AF%8D%E7%AA%97%E5%8F%A3%E5%88%86%E7%B1%BB%E5%92%8C%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C 斯坦福大学深度学习与自然语言处理第四讲:词窗口分类和神经网络 3条回复 斯…
原文:https://github.com/aymericdamien/TopDeepLearning 项目名称 Stars 项目介绍 TensorFlow 29622 使用数据流图计算可扩展机器学习问题. Caffe 11799 Caffe是一个高效的开源深度学习框架. Neural Style 10148 Torch实现的神经网络算法. Deep Dream 9042 Deep Dream,一款图像识别工具. Keras 7502 一款Python实现的深度学习库,包括卷积神经网络.递归神经…
目前,深度学习和深度强化学习已经在实践中得到了广泛的运用.资源型博客sky2learn整理了15个深度学习和深入强化学习相关的在线课程,其中包括它们在自然语言处理(NLP),计算机视觉和控制系统中的应用教程. 这些课程涵盖了神经网络,卷积神经网络,循环网络和其变体,训练深度网络的困难,无监督表示学习,深度信念网络,深玻尔兹曼机器,深度Q学习,价值函数估计和优化以及蒙特卡洛树搜索等多种算法的基础知识. 吴恩达:深度学习专项 这系列课程侧重于讲解深度学习的基础和在不同领域的运用方式,如医疗健康,自动…
[深度学习]CNN 中 1x1 卷积核的作用 最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前接触过的教材的例子中最小的卷积核是 3x3 ,那么,1x1 的卷积核有什么意义呢? 最初应用 1x1 卷积核的神经网络是 Network In Network,然后 GoogLeNet 和 VGG 也不约而同的更正了. 他们在论文中解释,大概有下面 2 个意义. 1.增加网络的深度 这个就比较好理解…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 13. 深度学习与自然语言处理 13.1 传统方法的局限 前面已经讲过了隐马尔可夫模型.感知机.条件随机场.朴素贝叶斯模型.支持向量机等传统机器学习模型,同时,为了将这些机器学习模型应用于 NLP,我们掌握了特征模板.TF-IDF.词袋向量等特征提取方法.而这些方法的局限性表现为如下: 数据稀疏 首先,传统的机器学习方法不善于处理数据稀疏问题,这在自然语言处理领域显得尤为突出,语…
本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN)的实现,本文主要重在理解原理和底层实现. 一.概述 1.1 卷积神经网络(CNN) 卷积神经网络(CNN)是一种具有局部连接.权重共享和平移不变特性的深层前馈神经网络. CNN利用了可学习的kernel卷积核(filter滤波器)来提取图像中的模式(局部和全局).传统图像处理会手动设计卷积核(例如高…
AI(人工智能)是未来,是科幻小说,是我们日常生活的一部分.所有论断都是正确的,只是要看你所谈到的AI到底是什么. 例如,当谷歌DeepMind开发的AlphaGo程序打败韩国职业围棋高手Lee Se-dol,媒体在描述DeepMind的胜利时用到了AI.机器学习.深度学习等术语.AlphaGo之所以打败Lee Se-dol,这三项技术都立下了汗马功劳,但它们并不是一回事. 要搞清它们的关系,最直观的表述方式就是同心圆,最先出现的是理念,然后是机器学习,当机器学习繁荣之后就出现了深度学习,今天的…