计算sigma】的更多相关文章

1.计算平均值Avg Avg = (a0 + a1 + ......+ an-1) / n 2.计算sigma sigma = sqrt( ( (a0-avg) ^2   + (a1-avg) ^2 + ..... +(an-1 -avg) ^2 ) / (n-1) ) 3.3 sigma = 3* sigma  6 sigma = 6 * sigma…
原文链接:奇异值分解(SVD)的计算方法 奇异值分解是线性代数中一种重要的矩阵分解方法,这篇文章通过一个具体的例子来说明如何对一个矩阵A进行奇异值分解. 首先,对于一个m*n的矩阵,如果存在正交矩阵U(m*m阶)和V(n*n阶),使得(1)式成立: \[A=U \Sigma V^T \tag{1}\] 则将式(1)的过程称为奇异值分解,其中\(\Sigma_{mn}=\begin{bmatrix}\Sigma_1 & 0 \\ 0 & 0\end{bmatrix}\),且 \(\Sigma…
Introduction 主成分分析(Principal Components Analysis)是一种对特征进行降维的方法.由于观测指标间存在相关性,将导致信息的重叠与低效,我们倾向于用少量的.尽可能多能反映原特征的新特征来替代他们,主成分分析因此产生.主成分分析可以看成是高维空间通过旋转坐标系找到最佳投影(几何上),生成新维度,其中新坐标轴每一个维度都是原维度的线性组合\(\theta'X\)(数学上),满足: 新维度特征之间的相关性尽可能小 参数空间\(\theta\)有界 方差尽可能大,…
多变量线性回归(Multivariate Linear Regression) 作业来自链接:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex3/ex3.html 这次的多变量线性回归问题,输入特征向量X是二维的,一个维度表示房间面积,一个维度表示房间数量,输出Y是房子的价格. 这一次试着自己找了一下合适的学习速率和迭代次数 合适的学习速率通过看损失…
第三次校赛链接:快戳我 1001 考虑前半组数,我们只需要标记每个数出现的次数,再加上这个数之前的数出现的次数,即为这个数在m次操作中总共需要翻转的次数(即求前缀和),再根据翻转的奇偶性判断最后这个位置上的数有没有翻转即可.后半组数的处理方法类似. #include<cstdio> #include<iostream> #include<cstring> #include<string> #include<cmath> #include<a…
斯坦福CS224n作业一 softmax 作业要求如下: 解析:题目要求我们证明\(softmax\)函数具有常数不变性. 解答:对于\(x+c\)的每一维来说,有如下等式成立: \[softmax(x+c)_{i}=\frac{e^{x_{i}+c}}{\sum_{j}e^{x_{j}+c}}=\frac{e^{x_{i}}*e^{c}}{\sum_{j}(e^{x_{j}}*e^{c})}=\frac{e^{x_{i}}*e^{c}}{\sum_{j}(e^{x_{j}})*e^{c}}=\…
通过数据压缩(降维)可以减少特征数量,可以降低硬盘和内存的存储,加快算法的训练. 还可以把高维的数据压缩成二维或三维,这样方便做数据可视化. 数据压缩是通过相似或者相关度很高的特征来生成新的特征,减少特征数量.例如,上图x1是厘米,x2是英寸,这两个特征相关度很高,可以压缩成一个特征. ====================================== 主成分分析(Principal Component Analysis, PCA)是常用的降维算法. 例如,要将二维数据压缩成一维数据,…
参考: https://blog.csdn.net/u012633319/article/details/80921023 二维高斯核, 可以根据下面的公式推到为两个一维高斯核的乘积: 原型: /** @brief Returns Gaussian filter coefficients. The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter coefficien…
[Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular Value Decomposition (SVD)是线性代数中十分重要的矩阵分解方法,被称为"线性代数的基本理论",因为它不仅可以运用于所有矩阵(不像特征值分解只能用于方阵),而且奇异值总是存在的. SVD定理 设一个矩阵\(A^{m×n}\)的秩为\(r∈[0,min(m,n)]\),矩阵…
转自:https://blog.csdn.net/u012162613/article/details/45920827 https://www.jianshu.com/p/d6e7083d7d61 1.思想 t-SNE(t-distributed stochastic neighbor embedding)是用于降维的一种机器学习算法,是由 Laurens van der Maaten 和 Geoffrey Hinton在08年提出来. 此外,t-SNE 是一种非线性降维算法,非常适用于高维数…