利用canny边缘检测,我们可以很好地得到哦一个图像的轮廓,下面是基于C++的,这是我们通过这段代码得到的结果: #include "pch.h" #include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include<opencv2/imgproc/imgproc.hpp> using namespace c…
#include <stdio.h> #include"opencv2/opencv.hpp" using namespace cv; int main() { VideoCapture a(); Mat edge; ) { Mat frame; a >> frame; cvtColor(frame,edge,CV_BGR2GRAY); blur(edge,edge,Size(,)); Canny(edge, edge, , , ); imshow("…
一.读取并播放的代码如下: #include "pch.h" #include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include<opencv2/imgproc/imgproc.hpp> using namespace cv; int main() { VideoCapture a; a.open(&quo…
使用 OpenCV 和 Python 对实时视频流进行深度学习目标检测是非常简单的,我们只需要组合一些合适的代码,接入实时视频,随后加入原有的目标检测功能. 在本文中我们将学习如何扩展原有的目标检测项目,使用深度学习和 OpenCV 将应用范围扩展到实时视频流和视频文件中.这个任务会通过 VideoStream 类来完成. 深度学习目标检测教程:http://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-…
用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学习之二:Neural art http://phunter.farbox.com/post/mxnet-tutorial2…
很久之前学习过一段时间的OpenCV,当时没有做什么笔记,但是代码都还在,这里把它贴出来做个记录. 代码放在码云上,地址在这里https://gitee.com/solym/OpenCVTest/tree/master/OpenCVTest. 效果 代码 #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp>…
在如今人工智能的浪潮下,无数模拟机器学习和深度学习的开发者工具倍出,其中在计算机图形学和计算机视觉里面最流行的一个库就是OpenCV库了.计算机图形学和计算机视觉学在我们的自动驾驶和仿生机器人当中有着举足轻重的地位,尤其是opencv库在里面的应用尤为广泛.今天我就分享给大家我们在python环境下,实现调用opencv库.用Python调用opencv库而不用C++的缘故是,第一:现在我们的高端处理器(如由中科大少年班的天才陈天石先生所创办的寒武纪科技有限公司的深度学习处理器)已经具备了强大的…
了解Canny边缘检测的概念 1.原理 Canny边缘检测是一种非常流行的边缘检测算法,是 John F.Canny在1986年提出的.它是一个有很多步构成的算法 1)噪声去除 使用5*5的高斯滤波器去除噪声 2)计算图像梯度 对平滑后的图像使用Sobel算子计算水平方向和竖直方向的一阶导数.根据得到的这两幅梯度图找到边界的梯度和方向,公式如下: 梯度的方向一般总是与边界垂直.梯度的方向被归为四类:垂直,水平,和两个对角线 3)非极大值抑制 在获得梯度的方向和大小以后,应该对整幅图像做一个扫描,…
Canny边缘检测 图像的边缘检测的原理是检测出图像中所有灰度值变化较大的点,而且这些点连接起来就构成了若干线条,这些线条就可以称为图像的边缘函数原型:     void cvCanny(       const CvArr* image,              //第一个参数表示输入图像,必须为单通道灰度图      CvArr* edges,                      //第二个参数表示输出的边缘图像,为单通道黑白图      double threshold1,    …
深层神经网络可以解决部分浅层神经网络解决不了的问题. 神经网络的优化目标-----损失函数 深度学习:一类通过多层非线性变化对高复杂性数据建模算法的合集.(两个重要的特性:多层和非线性) 线性模型的最大特点:任意线性模型的组合仍然是线性模型.(任意层的全连接神经网络和单层神经网络模型的表达能力没有任何区别) 激活函数实现去线性化:ReLU函数  sigmoid函数  tanh函数 (增加偏置项) ,TensorFlow支持7中不同的非线性激活函数 感知机:单层的神经网络,无法模拟异或运算.加入隐…