VGG16 ReNetInception network】的更多相关文章

VGG16就是运用很简单的2个filter s=2 f=2 的pool以及3x3 same padding的filter. 每pool一下以后 翻倍filter的depth Resnet就是跳级传播结果 我们的data就越来越细 越来越长 inception network就是用1x1的filter去reduce一下dimension 然后交给不同size的filter 最后把所有卷积结果堆叠起来(same padding) 同时在整个神经网络中散布一些branch, 提前做prediction…
作者:Ross Girshick 该论文提出的目标检测算法Fast Region-based Convolutional Network(Fast R-CNN)能够single-stage训练,并且可以同时学习对object proposals的分类与目标空间位置的确定,与以往的算法相比该方法在训练和测试速度.检测精度上均有较大提升. 目标检测算法比较复杂主要是因为检测需要确定目标的准确位置,这样的话就面临着两个主要的问题:首先,大量的candidate object locations(pro…
一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32*32 卷积层:2个 降采样层(池化层):2个 全连接层:2个 输出层:1个.10个类别(数字0-9的概率) LeNet-5网络是针对灰度图进行训练的,输入图像大小为32*32*1,不包含输入层的情况下共有7层,每层都包含可训练参数(连接权重).注:每个层有多个Feature Map,每个Featu…
LeNet – 5网络 网络结构为: 输入图像是:32x32x1的灰度图像 卷积核:5x5,stride=1 得到Conv1:28x28x6 池化层:2x2,stride=2 (池化之后再经过激活函数sigmoid) 得到Pool1:14x14x6 卷积核:5x5,stride=1 得到Conv2:10x10x16 池化层Pool2:2x2,stride=2 (池化之后再经过激活函数sigmoid) 得到Pool2:5x5x16 然后将Pool2展开,得到长度为400的向量 经过第一个全连接层,…
catalogue . 引言 . Neural Networks Transform Space - 神经网络内部的空间结构 . Understand the data itself by visualizing high-dimensional input dataset - 输入样本内隐含的空间结构 . Example : Word Embeddings in NLP - text word文本词语串内隐含的空间结构 . Example : Paragraph Vectors in NLP…
Han Hu--[ICCV2017]WordSup_Exploiting Word Annotations for Character based Text Detection 作者和代码 caffe检测torch7识别代码 关键词 文字检测.多方向.直接回归.$$xywh\theta$$ .multi-stage.监督学习 方法亮点 采用单词.文本行的标注信息进行监督学习来辅助字符检测 在ICDAR2013数据集上F值90+,后来的方法能超过这篇文章的寥寥无几 方法概述 利用Faster RC…
Weilin Huang——[arXiv2016]Accurate Text Localization in Natural Image with Cascaded Convolutional Text Network 目录 作者和相关链接 背景介绍 方法概括 方法细节 实验结果 总结与收获点 参考文献 作者和相关链接 个人主页:Tong He,黄伟林,乔宇,姚剑 作者简单信息: 论文下载:论文传送门 背景介绍 自底向上方法(bottom up)的一般流程 Step 1: 用滑动窗口或者MSER…
Weilin Huang——[ECCV2016]Detecting Text in Natural Image with Connectionist Text Proposal Network 目录 作者和相关链接 几个关键的Idea出发点 方法概括 方法细节 实验结果 总结与收获点 作者和相关链接 个人主页:Zhi Tian,黄伟林,Tong He,Pan He,乔宇 作者简单信息: 论文下载:论文传送门 代码下载:代码传送门 几个关键的Idea出发点 文本检测和一般目标检测的不同——文本线是…
一 实例探索 上一节我们介绍了卷积神经网络的基本构建,比如卷积层.池化层以及全连接层这些组件.事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络.最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法.实际上在计算机视觉任务中表现良好的神经网络框架往往也适用于其它任务,也许你的任务也不例外.也就是说,如果有人已经训练或者计算出擅长识别猫.狗.人的神经网络或者神经网络框架,而你的计算…
前面曾提到过CTPN,这里就学习一下,首先还是老套路,从论文学起吧.这里给出英文原文论文网址供大家阅读:https://arxiv.org/abs/1609.03605. CTPN,以前一直认为缩写一般是从题目的开始依次排序选取首字母的,怕是孤陋寡闻了,全称是“ Detecting Text in Natural Image with Connectionist Text Proposal Network”,翻译过来是基于连接Proposal(直译太难受!!)网络的文本检测. 作者在论文中描述了…
论文标题:Detecting Text in Natural Image with Connectionist Text Proposal Network 论文作者:Zhi Tian , Weilin Huang, Tong He , Pan He , and Yu Qiao 论文源代码的下载地址:https://github.com/tianzhi0549/CTPN 论文代码的下载地址:https://github.com/eragonruan/text-detection-ctpn 论文地址…
Robust Deep Multi-modal Learning Based on Gated Information Fusion Network 2018-07-27 14:25:26 Paper:https://arxiv.org/pdf/1807.06233.pdf  Related Papers:   1. Infrared and visible image fusion methods and applications: A survey Paper 2. Chenglong Li…
引自:http://blog.csdn.net/sinat_26917383/article/details/72859145 中文文档:http://keras-cn.readthedocs.io/en/latest/  官方文档:https://keras.io/  文档主要是以keras2.0. . . Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Seq…
torchnet+VGG16计算patch之间相似度 torch VGG16 similarity 本来打算使用VGG实现siamese CNN的,但是没想明白怎么使用torchnet对模型进行微调...所以只好把VGG的卷积层单独做一个数据预处理模块,后面跟一个网络,将两个VGG输出的结果输入该网络中,仅训练这个浅层网络. 数据:使用了MOTChallenge数据库MOT16-02中的pedestrian 代码: -- -------------------------------------…
前言 最近有一个idea需要去验证,比较忙,看完Mask R-CNN论文了,最近会去研究Mask R-CNN的代码,论文解析转载网上的两篇博客 技术挖掘者 remanented 文章1 论文题目:Mask R-CNN 论文链接:论文链接 论文代码:Facebook代码链接:Tensorflow版本代码链接:] to compute the exact values of the input features at four regularly sampled locations in each…
论文<A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding> Pruning by learning only the important connections. all connections with weights below a threshold are removed from the network. retrain the network to learn the…
基于三端卷积网络的在线视频目标分割 针对半监督视频目标分割任务,作者采取了和MaskTrace类似的思路,以optical flow为主. 本文亮点在于: 1. 使用共享backbone,三输出的自编码器. 2. 对一些视频中确定性像素建模,分割前后景. 3. 对被遮挡又重新出现的物体使用前后景GMMs损失建模识别,增加正确率. 摘要 半监督的在线视频目标分割任务就是给定第一帧的Mask,然后分割后续的帧.我们可以使用optical flow向量传递前面帧的分割效果到后续帧,但是这样会产生错误.…
Connectionist Text Proposal Network 简介 CTPN是通过VGG16后在特征图上采用3*3窗口进行滑窗,采用与RPN类似的anchor机制,固定width而只预测anchor的y坐标和高度,达到比较精准的text proposal效果.同时,文章的亮点在于引入了RNN,使用BLSTM使得预测更加精准.CTPN在自然场景下文本提取的效果很不错,不同于传统的bottom-up方法,传统方法通过检测单个字符然后再去连接文本线,其准确性主要依赖于单个字符的识别,而且错误…
ResNet, AlexNet, VGG, Inception: 理解各种各样的CNN架构 本文翻译自ResNet, AlexNet, VGG, Inception: Understanding various architectures of Convolutional Networks,原作者保留版权 卷积神经网络在视觉识别任务上的表现令人称奇.好的CNN网络是带有上百万参数和许多隐含层的“庞然怪物”.事实上,一个不好的经验规则是:网络越深,效果越好.AlexNet,VGG,Inceptio…
这里的网络架构和论文中插图中的网络架构是相一致的.对了,忘了说了,这里使用的keras版本是1.2.2,等源码读完之后,我自己改一个2.0.6版本上传到github上面.可别直接粘贴复制,里面有些中文的解释,不一定可行的.#defint input shapeinput_shape = (300,300,3)#defint the number of classes num_classes = 21 #Here the network is wrapped in to a dictory bec…
这是一篇水货写的笔记,希望路过的大牛可以指出其中的错误,带蒟蒻飞啊~ 一.    梯度消失/梯度爆炸的问题 首先来说说梯度消失问题产生的原因吧,虽然是已经被各大牛说烂的东西.不如先看一个简单的网络结构, 可以看到,如果输出层的值仅是输入层的值与权值矩阵W的线性组合,那么最终网络最终的输出会变成输入数据的线性组合.这样很明显没有办法模拟出非线性的情况.记得神经网络是可以拟合任意函数的.好了,既然需要非线性函数,那干脆加上非线性变换就好了.一般会使用sigmoid函数,得到,这个函数会把数据压缩到开…
Parallel Feature Pyramid Network for Object Detection ECCV2018 总结: 文章借鉴了SPP的思想并通过MSCA(multi-scale context aggregation)模块进行特征融合从而提出PFPNet(Parallel Feature Pyramid Network)算法来提升目标检测的效果. 1.使用spp模块通过扩大网络宽度而不是增加深度来生成金字塔形特征图 2.提出msca模块,有效地结合了大不相同规模的上下文信息 3…
作者: ShijieSun, Naveed Akhtar, HuanShengSong, Ajmal Mian, Mubarak Shah 来源: arXiv:1810.11780v1 项目:https://github.com/shijieS/SST.git 摘要 MOT方法一般包含两个步骤:目标检测和数据关联. 目标检测这两年随着深度学习的发展而迅速发展,但是数据关联绝大多数还是采用hand crafted的方式将表观特征,运动信息,空间关系,group关系等进行结合. 这篇文章则是利用深度…
Single-Shot Refinement Neural Network for Object Detection 目录 1. motivation 2. RefineDet 解析(Network Architecture) 2.1 backbone 的构造 2.1 ARM的作用与构造 2.2 ODM的作用与构造 2.3 TCB 模块解析 2.4 multi-task loss function: 2.5 Two-Step Cascaded Regression(两步级联的回归) 2.6 Ne…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1903.11012v3 [cs.LG] 19 Aug 2019 Neural Networks, 25 November 2019 Abstract 深度强化学习(RL)在可以通过训练过的策略解决的任务上表现了出色的性能.在使用多层神经网络(NN)的前沿机器学习方法中,它起着主导作用.同时,深度RL要求对噪声的高灵敏度,不完整和误导输入数据.遵循生物学直觉,我们将使用脉冲神经网络(SNN)来解决深度RL解决方案的一些不足…
论文链接:https://arxiv.org/abs/1903.09784v1 Abstract 社交关系智能代理在人工智能领域中越来越引人关注.为此,我们需要一个可以在不同社会关系上下文中理解社交关系的系统.在给定的视觉场景中推断社会情境不仅涉及对象的识别,而且还需要更深入地了解所涉人员的关系和属性.因此,一种表示人际关系和属性的计算方法是使用显式的知识图谱来进行更高级别的推理.我们介绍了一种新颖的可训练的端到端的神经网络,其能够生成社交关系图-对给定的输入图像中的社交关系和属性进行结构化.统…
Abstract 在图像中简历稠密匹配是很重要的任务, 包括 几何匹配,光流,语义匹配. 但是这些应用有很大的挑战: 大的平移, 像素精度, 外观变化: 当前是用特定的网络架构来解决一个单一问题. 我们提出了一个 universal 网络框架,我们获得了高精度和鲁棒性,对于大的平移,通过全局和局部相关层. 我们提出的GLU-Net是SOTA的. 1. Introduction 在几何匹配任务中[18],有相同场景的不同视角. 光流[4,20]目标是估计准确的像素级别的位移. 在语义匹配任务中[1…
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS TUTORIAL, PART 1 – INTRODUCTION TO RNNS . Recurrent Neural Networks(RNNS) ,循环神经网络,是一个流行的模型,已经在许多NLP任务上显示出巨大的潜力.尽管它最近很流行,但是我发现能够解释RNN如何工作,以及如何实现RNN的资料很少…
上一节完成了 flat 的配置工作,今天创建 OVS flat network.Admin -> Networks,点击 "Create Network" 按钮. 显示创建页面. Provider Network Type 选择 "Flat". Physical Network 填写 "default",与 ml2_conf.ini 中 flat_networks 参数值保持一致. 点击 "Create Network"…
前面讨论了 OVS local network,今天开始学习 flat network. flat network 是不带 tag 的网络,宿主机的物理网卡通过网桥与 flat network 连接,每个 flat network 都会占用一个物理网卡. 在 ML2 配置中 enable flat network 在控制节点 /etc/neutron/plugins/ml2/ml2_conf.ini 中设置 flat network 相关参数: tenant_network_types = fl…