首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[NOIP2017提高组]小凯的疑惑-扩展欧几里得
】的更多相关文章
[NOIP2017提高组]小凯的疑惑-扩展欧几里得
#include<bits/stdc++.h> using namespace std; long long a,b,x,y,ans,tmp; inline void ex_gcd(long long a,long long b,long long &x,long long &y){ if(!b){ x = 1; y = 0; return; } ex_gcd(b,a%b,y,x); y -= (a/b)*x; } int main(){ cin>>a>>…
[NOIp2017提高组]小凯的疑惑
题目大意: 给你两个数a,b,保证a与b互质,求最大的x满足不能被表示成若干个a与b的和. 思路: 据说是小学奥数题. 考场上先写了个a*b的60分DP,然后打表发现答案就是(a-1)*(b-1)-1. #include<cstdio> #include<cctype> typedef long long int64; inline int getint() { register char ch; while(!isdigit(ch=getchar())); register ';…
【NOIP2017 D1 T1 小凯的疑惑】
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在 小凯无法准确支付的商品. 输入输出格式 输入格式: 输入数据仅一行,包含两个正整数 aa 和 bb,它们之间用一个空格隔开,表示小凯手 中金币的面值. 输出格式: 输出文件仅一行,一个正整数 NN,表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的…
NOIP2017 Day1 T1 小凯的疑惑
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在小凯无法准确支付的商品. 输入格式: 输入数据仅一行,包含两个正整数 a 和 b,它们之间用一个空格隔开,表示小凯 中金币的面值. 输出格式: 输出文件仅一行,一个正整数 N,表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值. 不多说,找了半个…
2017提高组D1T1 洛谷P3951 小凯的疑惑
洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在 小凯无法准确支付的商品. 输入输出格式 输入格式: 两个正整数 a 和 b,它们之间用一个空格隔开,表示小凯中金币的面值. 输出格式: 一个正整数 N,表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值. 输入…
【比赛】NOIP2017 小凯的疑惑
找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m个剩余类,分别为 mk,mk+1,mk+2,……,mk+(m-1) 分别记为{0(mod m)},{1(mod m)}…… 而n的倍数肯定分布在这m个剩余类中 因为gcd(m,n)=1,所以每个剩余类中都有一些数是$n$的倍数,并且是平均分配 设 kmin = min { k | nk ∈ {i (…
联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)
前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能整除\(gcd(n,m)\),那么一定不是好数. 所以,我们把\(n,m,q\)分别除以\(gcd(n,m)\),是不影响得出的"好数"数量的. 好,那么现在\(n,m\)就互质了. 现在,就把问题转化为了(用比较形象化的语言来说,就是)有\(n,m\)互质,求\([1,q]\)中有多少个…
【题解】NOIP2017 提高组 简要题解
[题解]NOIP2017 提高组 简要题解 小凯的疑惑(数论) 不讲 时间复杂度 大力模拟 奶酪 并查集模板题 宝藏 最优解一定存在一种构造方法是按照深度一步步生成所有的联通性. 枚举一个根,随后设\(dp(i,j)\)表示最大深度为\(i\)且当前联通的集合是\(j\)的最小答案.预处理\(dis(u,j)\)表示当\(j\)集合内的点都存在时,\(u\)到这些点的最短的最短边. 转移: \[ dp(i,j)=\min \{dp(i-1,j),dp(i-1,s)+(i-1)\times \su…
[SinGuLaRiTy] NOIP2017 提高组
[SinGuLaRiTy-1048] Copyright (c) SinGuLaRiTy 2018. All Rights Reserved. NOIP2017过了这么久,现在2018了才找到寒假这么一个空挡来写题解.哎,没办法,谁叫学校抓的紧呢. 序 | Before 这是我的最后一次NOIP. 因为是最后一次的原因吧,考前压力就蛮大的,再加上各种模拟赛,模板练习的轮番轰炸,走进考场时整个人都是“飘飘欲仙”的感觉~ 我的NOIP2017就在这种“飘飘欲仙”的氛围下开始了. 游记 | Blogs…
Luogu [P3951] 小凯的疑惑
题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可以准确支付这个物品. 显然,可以列出一个不定方程ma+nb=k,(m n,为未知数)由于m,n是金币个数,所以m>-1,n>-1, 这个不定方程的通解为m=m0+bt,n=n0-at,(仅仅为写法的一种,不过这样写最方便,m0,n0为方程的一组解), m0+bt>-1,n0-at>-1…