MNIST(Mixed National Institute of Standards and Technology)http://yann.lecun.com/exdb/mnist/ ,入门级计算机视觉数据集,美国中学生手写数字.训练集6万张图片,测试集1万张图片.数字经过预处理.格式化,大小调整并居中,图片尺寸固定28x28.数据集小,训练速度快,收敛效果好. MNIST数据集,NIST数据集子集.4个文件.train-label-idx1-ubyte.gz 训练集标记文件(28881字节)…
MNIST 卷积神经网络.https://github.com/nlintz/TensorFlow-Tutorials/blob/master/05_convolutional_net.py .TensorFlow搭建卷积神经网络(CNN)模型,训练MNIST数据集. 构建模型. 定义输入数据,预处理数据.读取数据MNIST,得到训练集图片.标记矩阵,测试集图片标记矩阵.trX.trY.teX.teY 数据矩阵表现.trX.teX形状变为[-1,28,28,1],-1 不考虑输入图片数量,28x…
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu  tf.nn.…
一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度跟激活函数的梯度成正比(即激活函数的梯度越大,w和b的大小调整的越快,训练速度也越快) 3. 激活函数是sigmoid函数时,二次代价函数调整参数过程分析 理想调整参数状态:距离目标点远时,梯度大,参数调整较快:距离目标点近时,梯度小,参数调整较慢.如果我的目标点是调整到M点,从A点==>B点的调整…
单向LSTM笔记, LSTM做minist数据集分类 先介绍下torch.nn.LSTM()这个API 1.input_size: 每一个时步(time_step)输入到lstm单元的维度.(实际输入的数据size为[batch_size, input_size]) 2. hidden_size: 确定了隐含状态hidden_state的维度. 可以简单的看成: 构造了一个权重, 隐含状态 3 . num_layers: 叠加的层数.如图所示num_layers为 3 4. batch_firs…
UFLDL深度学习笔记 (四)用于分类的深度网络 1. 主要思路 本文要讨论的"UFLDL 建立分类用深度网络"基本原理基于前2节的softmax回归和 无监督特征学习,区别在于使用更"深"的神经网络,也即网络中包含更多的隐藏层,我们知道前一篇"无监督特征学习"只有一层隐藏层.原文深度网络概览不仅给出了深度网络优势的一种解释,还总结了几点训练深度网络的困难之处,并解释了逐层贪婪训练方法的过程.关于深度网络优势的表述非常好,贴在这里. ​ 使用深度…
http://www.cnblogs.com/denny402/p/5852983.html ensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试   刚开始学习tf时,我们从简单的地方开始.卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始. 神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层. 数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出.输出的时候,我们可以使用softmax回归,输出属于每…
keras-简单实现Mnist数据集分类 1.载入数据以及预处理 import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import * from keras.optimizers import SGD import os import tensorflow as tf #…
keras-基于CNN网络的Mnist数据集分类 1.数据的载入和预处理 import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import * from keras.optimizers import SGD,Adam from keras.regularizers imp…