PCA算法数学原理及实现】的更多相关文章

数学原理参考:https://blog.csdn.net/aiaiai010101/article/details/72744713 实现过程参考:https://www.cnblogs.com/eczhou/p/5435425.html 两篇博文都写的透彻明白. 自己用python实现了一下,有几点疑问,主要是因为对基变换和坐标变换理解不深. 先附上代码和实验结果: code: from numpy import * import numpy as np import matplotlib.p…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维 数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助 读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读…
PCA 的数学原理和可视化效果 本文结构: 什么是 PCA 数学原理 可视化效果 1. 什么是 PCA PCA (principal component analysis, 主成分分析) 是机器学习中对数据进行降维的一种方法. 例如,我们有这样的交易数据,它有这几个特征:(日期, 浏览量, 访客数, 下单数, 成交数, 成交金额),从经验可知,“浏览量”和“访客数”,“下单数”和“成交数”之间会具有较强的相关关系.这种情况下,我们保留其中的两个维度就可以保证原有的信息完整. 但是当我们在做降维的…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
一.PCA算法的原理 PCA(principle component analysis),即主成分分析法,是一个非监督的机器学习算法,是一种用于探索高维数据结构的技术,主要用于对数据的降维,通过降维可以发现更便于人理解的特征,加快对样本有价值信息的处理速度,此外还可以应用于可视化(降到二维)和去噪. PCA本质上是将方差最大的方向作为主要特征,并且在各个正交方向上将数据“离相关”,也就是让它们在不同正交方向上没有相关性.                                      …
非对称加密技术,在现在网络中,有非常广泛应用.加密技术更是数字货币的基础. 所谓非对称,就是指该算法需要一对密钥,使用其中一个(公钥)加密,则需要用另一个(私钥)才能解密. 但是对于其原理大部分同学应该都是一知半解,今天就来分析下经典的非对称加密算法 - RSA算法. 通过本文的分析,可以更好的理解非对称加密原理,可以让我们更好的使用非对称加密技术. 题外话: 并博客一直有打算写一系列文章通俗的密码学,昨天给站点上https, 因其中使用了RSA算法,就查了一下,发现现在网上介绍RSA算法的文章…
关于 PCA(Principal component analysis)主成分分析.是SVD(Singular value decomposition)神秘值分析的一种特殊情况.主要用于数据降维.特征提取. Matlab演示 生成一个随机矩阵 这里生成一个3∗3的小矩阵便于说明. A = rand(3,3); A=⎡⎣⎢2.7694−1.34993.03490.7254−0.06310.7147−0.2050−0.12411.4897⎤⎦⎥ 特征值分解 [V,D] = eig(A); V=⎡⎣⎢…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
PCA的数学原理 前言 数据的向量表示及降维问题 向量的表示及基变换 内积与投影 基 基变换的矩阵表示 协方差矩阵及优化目标 方差 协方差 协方差矩阵 协方差矩阵对角化 算法及实例 PCA算法 实例 进一步讨论 前言 PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中…
PCA主成分分析法的数据主成分分析过程及python原理实现 1.对于主成分分析法,在求得第一主成分之后,如果需要求取下一个主成分,则需要将原来数据把第一主成分去掉以后再求取新的数据X’的第一主成分,即为原来数据X的第二主成分,循环往复即可. 2.利用PCA算法的原理进行数据的降维,其计算过程的数学原理如下所示,其降维的过程会丢失一定的信息,因此采用恢复过程恢复原来的高维数据后,它会恢复为原来数据在新的主成分上的映射点,而不再是原来的坐标点. (1)高维数据的降维(从n维降到k维数据) (2)从…
引言: 最近一直在学习主成分分析(PCA),所以想把最近学的一点知识整理一下,如果有不对的还请大家帮忙指正,共同学习. 首先我们知道当数据维度太大时,我们通常需要进行降维处理,降维处理的方式有很多种,PCA主成分分析法是一种常用的一种降维手段,它主要是基于方差来提取最有价值的信息,虽然降维之后我们并不知道每一维度的数据代表什么意义,但是它将主要的信息成分保留了下来,那么PCA是如何实现的呢? 本文详细推导了PCA的数学原理,最后以实例进行演算. PCA的数学原理 (一)降维问题 大家都知道,PC…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
PCA PCA(Principal Component Analysis,主成分分析)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的…
BP算法从原理到实践 反向传播算法Backpropagation的python实现 觉得有用的话,欢迎一起讨论相互学习~Follow Me 博主接触深度学习已经一段时间,近期在与别人进行讨论时,发现自己对于反向传播算法理解的并不是十分的透彻,现在想通过这篇博文缕清一下思路.自身才疏学浅欢迎各位批评指正. 参考文献 李宏毅深度学习视频 The original location of the code 关于反向传播算法的用途在此不再赘述,这篇博文主要是理解形象化理解反向传播算法与python进行实…
//2019.08.17 #支撑向量机SVM(Support Vector Machine)1.支撑向量机SVM是一种非常重要和广泛的机器学习算法,它的算法出发点是尽可能找到最优的决策边界,使得模型的泛化能力尽可能地好,因此SVM对未来数据的预测也是更加准确的. 2.支撑向量机SVM有两种:Hard Margin SVM和Soft Margin SVM,对于第一种严格的支撑向量机算法主要解决的是线性可分的数据问题,而第二种SVM是在第一种的基础上改进而来,可以解决普遍的数据问题,对于问题的线性可…
PCA(Principal Component Analysis)主成分分析法的数学原理推导1.主成分分析法PCA的特点与作用如下:(1)是一种非监督学习的机器学习算法(2)主要用于数据的降维(3)通过降维,可以发现人类更加方便理解的特征(4)其他的应用:去燥:可视化等2.主成分分析法的数学原理主要是利用梯度上升法来最优化目标函数,即利用梯度上升法来求取效用函数的最大值,其具体的数学原理推导过程如下所示: 对于以上的函数,因为梯度的向量化表示我们已经求得,因此,我们便可以通过梯度上升法求取函数的…
欢迎关注我的博客专栏"图像处理中的数学原理具体解释" 全文文件夹请见 图像处理中的数学原理具体解释(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 假设你对PCA的推导和概念还不是非常清楚.建议阅读本文的前导文章 http://blog.csdn.net/baimafujinji/article/details/50372906 6.4.3 主成分变换的实现 本小节通过一个算例验证一下之前的推导.在前面给出的…
什么是BP网络 BP网络的数学原理 BP网络算法实现 转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/44514073  上一篇文章介绍了KNN分类器,当时说了其分类效果不是很出色但是比较稳定,本文后面将利用BP网络同样对Iris数据进行分类. 可以结合下面这几篇文章一起看: http://www.cnblogs.com/jzhlin/archive/2012/07/28/bp.html http://www.cnblogs…
欢迎关注我的博客专栏"图像处理中的数学原理具体解释" 全文文件夹请见 图像处理中的数学原理具体解释(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 阅读本文须要最主要的线性代数知识和概率论基础:) 6.4.2 主成分变换的推导 前面提到的一国经济增长与城市化水平关系的问题是典型二维问题,而协方差也仅仅能处理二维问题.那维数多了自然就须要计算多个协方差.所以自然会想到使用矩阵来组织这些数据.为了帮助读者理解上面…
本文出处:http://blog.csdn.net/xizhibei http://www.cnblogs.com/bourneli/p/3624073.html PrincipalComponents Analysis,主成份分析 寻找最小均方意义下,最能代表原始数据的投影方法 然后自己的说法就是:主要用于特征的降维 另外,这个算法也有一个经典的应用:人脸识别.这里稍微扯一下,无非是把处理好的人脸图片的每一行凑一起作为特征向量,然后用PAC算法降维搞定之. PCA的主要思想是寻找到数据的主轴方…
作者:桂. 时间:2017-02-26  19:54:26 链接:http://www.cnblogs.com/xingshansi/articles/6445625.html 声明:转载请注明出处,谢谢. 前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子,引出PCA算法: 2)理论推导.主要介绍PCA算法的理论推导以及对应的数学含义: 3)算法…
最近频繁在论文中看到「PCA」的影子,所以今天决定好好把「PCA」的原理和算法过程弄清楚. 「PCA」是什么 PCA,又称主成分分析,英文全称「Principal Components Analysis」.维基百科上的解释是:「PCA」是一种分析.简化数据集的技术,经常用于减少数据集的维数,同时保持数据集中对方差贡献最大的特征.说得通俗一点,就是把数据集中重要的特征保存下来,把不重要的特征去除掉. 为什么要做这种事情呢?特征越多不是对分析问题更有帮助吗?确实,特征越多,涵盖的信息理论上会越多.但…
如果要得到pose视图,除非有精密的测量方法,否则进行大量的样本采集时很耗时耗力的.可以采取一些取巧的方法,正如A Survey on Partial of 3d shapes,描述的,可以利用已得到的3D模型,利用投影的方法 (page10-透视投影或者正射投影),自动得到精确的3D单向视图. 其中的遇到了好几个难题:透视投影的视角问题:单侧面的曲面补全问题(曲面插值问题):pose特征的描述性问题. 一篇文章看完视觉及相关通略. 先普及一下基础知识: 一:图像处理.计算机图形学.计算机视觉和…
概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hac…
GBDT算法是一种监督学习算法.监督学习算法需要解决如下两个问题: 1.损失函数尽可能的小,这样使得目标函数能够尽可能的符合样本 2.正则化函数对训练结果进行惩罚,避免过拟合,这样在预测的时候才能够准确. GBDT算法需要最终学习到损失函数尽可能小并且有效的防止过拟合. 以样本随时间变化对某件事情发生的变化为例,如下几副图形象的说明了机器学习的作用. 假设随着时间的变化对K话题存在如下样本: 如果没有有效的正则化,则学习结果会如下图所示: 这种情况下,学习结果跟样本非常符合,损失函数也非常小,但…
RSA加密数学原理 */--> *///--> *///--> UP | HOME RSA加密数学原理 Table of Contents 1 引言 2 RSA加密解密过程 2.1 加密 2.2 解密 3 收尾 1 引言 RSA加密算法,即是目前最有影响力的咬钥加密算法, 他能够抵抗到目前为止已知的绝大多数密码攻击, 已被ISO推荐为公钥数据加密标准. 该算法基于一个十分简单的数论事实: 将两个大素数乘十分容易, 但相要对乘积进行因式分解却极其困难, 因此可以将乘积公开作为加密密钥. (…
PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法. ...... (关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. ) 假如你要处理一个数据集, 数据集中的每条记录都是一个\(d\)维列向量. 但是这个\(d\)太大了, 所以你希望把数据维度给降下来, 既可以去除一些冗余信息, 又可以降低处理数据时消耗的计算资源(用computation budget 来描述可能更形象). 用稍微正式点的语言描述: 已知:一个数据…
http://www.aqee.net/how-reddit-ranking-algorithms-work/ 这是一篇继<Hacker News 排名算法工作原理>之后的又一篇关于排名算法的文章.这次我将跟大家探讨一下Reddit的文章排名算法和评论排名算法的工作原理.Reddit使用的算法也是很简单,容易理解和实现.这篇文章里我将会对其进行深入分析. 首先我们关注的是文章排名算法.第二部分将重点介绍评论排名算法,Reddit的评论排名跟文章排名使用的不是同一种算法(这点跟Hacker Ne…
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目更少的k个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关.关于PCA的更多介绍,请参考:https://en.wikipedia.org/wiki/Principal_component_analysis. PCA的主要算法如下: 组织数据形式,以便于模型…
pca算法: 算法原理: pca利用的两个维度之间的关系和协方差成正比,协方差为0时,表示这两个维度无关,如果协方差越大这表明两个维度之间相关性越大,因而降维的时候, 都是找协方差最大的. 将XX中的数据进行零均值化,即每一列都减去其均值. 计算协方差矩阵C=1mXTXC=1mXTX 求出CC的特征值和特征向量 将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P Y=XPY=XP就是降维到k维后的数据. 代码: # coding=utf- import matplotlib.p…