洛谷P4178 Tree (算竞进阶习题)】的更多相关文章

点分治 还是一道点分治,和前面那道题不同的是求所有距离小于等于k的点对. 如果只是等于k,我们可以把重心的每个子树分开处理,统计之后再合并,这样可以避免答案重复(也就是再同一个子树中出现路径之和为k的点) 但是对于这道题,如果我们还要这样求的话显然是会超时的,意外要枚举所有点的话有点勉强 ... 考虑一次把重心的子树全部遍历,统计到重心的距离,放进数组中,排序.然后我们可以用指针对撞的方法,用l,r两个指针分别从前后开始扫描. 容易发现,当指针再l的位置时,如果我们记录距离排好序的数组rd[l]…
推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径在重心的子树内就已经相交) 删除重心(打上永久标记),对子树继续处理,转1 求重心是板子,算答案的方法要依题而定,一般都要容斥. 模板题洛谷传送门 calc函数中,头尾两个指针扫的计数方法也是一种套路 因为要sort,所以复杂度\(O(n\log^2n)\),不过蒟蒻实测你谷数据\(k\)不超过\(…
可持久化Trie 需要知道一个异或的特点,和前缀和差不多 a[p] xor a[p+1] xor....xor a[n] xor x = a[p-1] xor a[n] xor x 所以我们把a[1...n]的异或和预处理出来,用s[i]表示,用一个可持久化Trie维护 问题就转化成s[n] xor x = val,求一个序列与val异或的最大值 第i个Trie的root对应维护s[1..i],这样我们在查询值的时候为了保证在[...r-1]之类,只要查询r-1及之前的版本 为了保证在[l-1.…
Tree P4178 Tree 点分治板子. 点分治就是直接找树的重心进行暴力计算,每次树的深度不会超过子树深度的\(\frac{1}{2}\),计算完就消除影响,找下一个重心. 所以伪代码: void solve(int u) { calc(u); used[u]=true; for(int i=head[u];i;i=e[i].nxt) { int v=e[i].to; if(!used[v]) { getroot(v) solve(root); } } } calc因题而异,主要靠思维.…
费用流 又是一道网络流的模型,对于这种费用与经过次数有关的边,我们经常把边拆成多条,比如这个题,第一次费用是x,第二次是0,我们就可以先把点拆成入点和出点,入点和出点又连两条边,第一条容量为1,费用为x:第二天容量为k-1,费用为0,意思很明确,第一次的流量可以得到费用,其他的流量都得不到费用. 原图坐标与坐标之间也连上容量为k,费用为0的边. 这样能保证网络中的最大流一定是k.(因为把源点当成(1,1)的入点,那么源点与他的出点只有k的容量). 我们在这个网络中跑最大费用最大流即可. #inc…
模拟+dfs 这个题就三行,搜索的话我们从右向左,从上到下.. 如果是在1,2行我们就直接枚举0-n所有数,但是到了第三行,最直接的就是填上这一列上前两行的数的和modN,在此基础上判断该填的数有没有被使用 如果没有被使用,且这个地方没有被赋值,就可以把要填的数填上去,如果被填了切符合要求,就不需要填数了..注意每次填数都要维护下一列进位的值以及回溯 有一个非常重要的剪枝就是:对于一个竖式a+b=c,如果(a+b)modn != c 且 (a + b + 1)modn != c,那么这个竖式就是…
还是数独.. 比上一个多了个分数矩阵,其实没什么差别,但是数据好像水了许多... #include <bits/stdc++.h> #define INF 0x3f3f3f3f using namespace std; typedef long long ll; inline int lowbit(int x){ return x & (-x); } inline int read(){ int X = 0, w = 0; char ch = 0; while(!isdigit(ch)…
树的直径 这题如果k=1很简单,就是在树的最长链上加个环,这样就最大化的减少重复的路程 但是k=2的时候需要考虑两个环的重叠部分,如果没有重叠部分,则和k=1的情况是一样的,但是假如有重叠部分,我们可以先把树直径找出来(最长链),然后把路径上的边权全部取反(1变-1),再找一次树的直径,如果第二次找的直径包含了取反的部分(即为重叠部分),这个重叠部分显然需要走两次. 可以推得答案为:2(n-1)-(L1-1)-(L2-1) 如果没有重叠部分,那么显然正确:假如有重叠部分,我们先减去了(L1-1)…
A* + dijkstra/spfa 第K短路的模板题,就是直接把最短路当成估价函数,保证估价函数的性质(从当前状态转移的估计值一定不大于实际值) 我们建反图从终点跑最短路,就能求出从各个点到终点的最短距离,这样就能满足估价函数的性质了 要注意一点,当起点和终点一样的时候第k短路就变成k+1短了,因为0也算一条... 话说回来为啥我用pair就MLE了呢.... #include <bits/stdc++.h> #define INF 0x3f3f3f3f using namespace st…
线段树区间染色 题目要求最大的连续段的左端点,我们在查询的时候返回最左端即可,注意查找顺序,应该从左到右!! 另外这类染色的push_down其实比较简单,直接染成上一层的标记即可 push_up和连续子段和有点像,需要维护前缀和后缀 #include <bits/stdc++.h> #define INF 0x3f3f3f3f using namespace std; typedef long long ll; inline int lowbit(int x){ return x &…