[中英][吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第二周测验 第2周测验 - 神经网络基础 神经元节点计算什么? [ ]神经元节点先计算激活函数,再计算线性函数(z = Wx + b) [★]神经元节点先计算线性函数(z = Wx + b),再计算激活. [ ]神经元节点计算函数g,函数g计算(Wx + b). [ ]在 将输出应用于激活函数之前,神经元节点计算所有特征的平均值 请注意:神经元的输出是a = g(Wx + b),其中g是激活函数(sigmoid,tanh,R…
[吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [  ]AI为我们的家庭和办公室的个人设备供电,类似于电力. [  ]通过“智能电网”,AI提供新的电能. [ ]AI在计算机上运行,​​并由电力驱动,但是它正在让以前的计算机不能做的事情变为可能. [★]就像100年前产生电能一样,AI正在改变很多的行业. 请注意: 吴恩达在视频中表达了同样的观点. 哪些是深度学习快速发展的原因? (两个选项…
[目录][吴恩达课后作业目录] 吴恩达深度学习相关资源下载地址(蓝奏云) 课程 周数 名称 类型 语言 地址 课程1 - 神经网络和深度学习 第1周 深度学习简介 测验 中英 传送门 无编程作业 编程作业 -- -- 第2周 神经网络基础 测验 中英 传送门 具有神经网络思维的Logistic回归 编程作业 中文 传送门 第3周 浅层神经网络 测验 中英 传送门 带有一个隐藏层的平面数据分类 编程作业 中文 传送门 第4周 深度神经网络的关键概念 测验 中英 传送门 一步步搭建多层神经网络以及应…
参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 两层神经网络,和吴恩达课后作业学习1-week3-homework-one-hidden-layer——不发布不同之处在于使用的函数不同线性->ReLU->线性->sigmod函数,训练的数据也不同,这里训练的是之前吴恩达课后作业学习1-week2-homework-logistic中的数据,判断是否为猫,查看使用…
参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 实现多层神经网络 1.准备软件包 import numpy as np import h5py import matplotlib.pyplot as plt import testCases #参见资料包,或者在文章底部copy from dnn_utils import sigmoid, sigmoid_backwar…
参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 初始化.正则化.梯度校验 1. 初始化参数:    1.1:使用0来初始化参数.    1.2:使用随机数来初始化参数.    1.3:使用抑梯度异常初始化参数(参见视频中的梯度消失和梯度爆炸).2. 正则化模型:    2.1:使用二范数对二分类模型正则化——L2正则化方法,尝试避免过拟合.    2.2:使用随机删除节…
参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 4.正则化 1)加载数据 仍是问题: 'c' argument has 1 elements, which is not acceptable for use with 'x' with s 解决——直接导入函数: import scipy.io as sio def load_2D_dataset(is_plot=Tru…
1.问题描述 有209张图片作为训练集,50张图片作为测试集,图片中有的是猫的图片,有的不是.每张图片的像素大小为64*64 吴恩达并没有把原始的图片提供给我们 而是把这两个图片集转换成两个.h5文件:train_catvnoncat.h5(训练集),test_catvnoncat.h5(测试集). 这三这个文件的下载地址:https://pan.baidu.com/s/1bL8SC3gNxbzL9Xo4C6ybow    提取码: iaq7  这个h5文件是一种数据文件格式,关于它的写入和读取…
参考:https://blog.csdn.net/u013733326/article/details/79971488 希望大家直接到上面的网址去查看代码,下面是本人的笔记  到目前为止,我们一直在使用numpy来自己编写神经网络.现在我们将一步步的使用深度学习的框架来很容易的构建属于自己的神经网络.我们将学习TensorFlow这个框架: 初始化变量 建立一个会话 训练的算法 实现一个神经网络 使用框架编程不仅可以节省你的写代码时间,还可以让你的优化速度更快. 1.导入TensorFlow库…
1:神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使用训练好的数据时,我们需要的是网络给我们输入结果,对于分类问题,我们需要获得分类结果,如下右图最后一层我们得到 的是概率,我们不需要训练及测试阶段的LOSS,ACCURACY层了. 下图是能过$CAFFE_ROOT/python/draw_net.py绘制$CAFFE_ROOT/models/c…