hdu4565 So Easy! 矩阵快速幂】的更多相关文章

A sequence Sn is defined as: Where a, b, n, m are positive integers.┌x┐is the ceil of x. For example, ┌3.14┐=4. You are to calculate Sn. You, a top coder, say: So easy! 矩阵快速幂 #include<stdio.h> #include<string.h> #include<math.h> typedef…
So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2286    Accepted Submission(s): 710 Problem Description A sequence Sn is defined as:Where a, b, n, m are positive integers.┌x┐is the ceil…
easy 个屁啊,一点都不easy,题目就是要求公式的值,但是要求公式在最后的取模前的值向上取整.再取模,无脑的先试了高速幂 double  fmod来做,结果发现是有问题的.这题要做肯定得凑整数,凑整  题目给 a+√b 那么加上a-√b就能够了.但是这样加上后面怎么处理还得减去.想了半年也想不出来. 原来用了负数的共轭思想.还有就是题目给的b的范围 是 ((a-1)*(a-1),a*a).所以 a-√b的值的 不管多少次方 的值都是小于1的,所以对于原式子 改装成 ((a + √b) ^n+…
题意: 求\(S_n=\left \lceil (a+\sqrt{b})^n \right \rceil mod \, m\)的值. 分析: 设\((a+\sqrt{b})^n=A_n+B_n \sqrt{b}\), \((a+\sqrt{b})^{n+1}=(a+\sqrt{b})(A_n+B_n \sqrt{b})=(aB_n+A_n)+(A_n+aB_n) \sqrt{b}\), 所以有转移矩阵: \(\begin{bmatrix} a & b \\ 1 & a \end{bmatr…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4565 题解:(a+√b)^n=xn+yn*√b,(a-√b)^n=xn-yn*√b, (a+√b)^n=2*xn-(a-√b)^n,(0<=a-√b<=1),所以整数部分就是2*xn 然后再利用两个公式 (a+√b)^(n+1)=(a+√b)*(xn+yn*√b) (a-√b)^(n+1)=(a-√b)*(xn-yn*√b) 联立得到 x(n+1)=a*xn+b*yn y(n+1)=xn+a*yn…
HDU2256 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2256 题意:求(sqrt(2)+sqrt(3))^2n%1024是多少. 这个题算是hdu4565的一个常数版本了,所以我们先说这道题.对于这道题的做法我们可以计算((sqrt(2)+sqrt(3))^2)^n=(5+2*sqrt(6))^n,对于(5+2*sqrt(6))^n我们知道答案必定是以an+bn*sqrt(6),而对于下一项我们只需要求(an+bn*sqrt(6))*(5…
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Google Codejam Round 1A的C题. #include <bits/stdc++.h> typedef long long ll; const int N = 5; int a, b, n, mod; /* *矩阵快速幂处理线性递推关系f(n)=a1f(n-1)+a2f(n-2)+.…
题目大意:就是给出a,b,n,m:让你求s(n); 解题思路:因为n很可能很大,所以一步一步的乘肯定会超时,我建议看代码之前,先看一下快速幂和矩阵快速幂,这样看起来就比较容易,这里我直接贴别人的推导,应该很容易懂. 看到这里你应该明白了大概吧!好吧现在继续看我的代码吧!! AC代码: #include<stdio.h> long long c[2][2],d[2]; int main() { long long a,b,n,m,x,y,p,q; while(scanf("%I64d%…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 题目大意: 给出a,b,n,m,求出的值, 解题思路: 因为题目中出现了开根号,和向上取整后求余,所以用矩阵快速幂加速求解过程的时候,会产生误差,就很自然地想到了凑数,因为(a-1)^2<b<a^2,得出0<a-sqrt(b)<1,则无论n取多大,(a-sqrt(b))^n都是小于1的,(a-sqrt(b))^n 与 (a+sqrt(b))^n共轭,两者展开后会相互抵销,所以(…
[解题思路] 给一张神图,推理写的灰常明白了,关键是构造共轭函数,这一点实在是要有数学知识的理论基础,推出了递推式,接下来就是矩阵的快速幂了. 神图: 给个大神的链接:构造类斐波那契数列的矩阵快速幂 /* * Problem: HDU No.4565 * Running time: 62MS * Complier: G++ * Author: javaherongwei * Create Time: 9:55 2015/9/21 星期一 */ #include <bits/stdc++.h>…