一.Spark WordCount动手实践 我们通过Spark WordCount动手实践,编写单词计数代码:在wordcount.scala的基础上,从数据流动的视角深入分析Spark RDD的数据处理过程. 首先需要建立一个文本文件helloSpark.txt,helloSpark.txt的文本内容如下. Hello Spark Hello Scala Hello Hadoop Hello Flink Spark is Awesome 然后在Eclipse中编写wordcount.scala…
每天进步一点点~开搞~ abstract class RDD[T: ClassTag]( //@transient 注解表示将字段标记为瞬态的 @transient private var _sc: SparkContext, // Seq是序列,元素有插入的先后顺序,可以有重复的元素. @transient private var deps: Seq[Dependency[_]] ) extends Serializable with Logging { if (classOf[RDD[_]]…
前情提要: Spark RPC框架源码分析(一)简述 一. Spark RPC概述 上一篇我们已经说明了Spark RPC框架的一个简单例子,Spark RPC相关的两个编程模型,Actor模型和Reactor模型以及一些常用的类.这一篇我们还是用上一篇的例子,从代码的角度讲述Spark RPC的运行时序,从而揭露Spark RPC框架的运行原理.我们主要将分成两部分来讲,分别从服务端的角度和客户端的角度深度解析. 不过源码解析部分都是比较枯燥的,Spark RPC这里也是一样,其中很多东西都是…
本文是Scheduler模块源码分析的第二篇,第一篇Spark Scheduler模块源码分析之DAGScheduler主要分析了DAGScheduler.本文接下来结合Spark-1.6.0的源码继续分析TaskScheduler和SchedulerBackend. 一.TaskScheduler和SchedulerBackend类结构和继承关系 之所以把这部分放在最前面,是想让大家在阅读后续文章时对TaskScheduler和SchedulerBackend是什么有一个概念.因为有些方法是从…
本文主要结合Spark-1.6.0的源码,对Spark中任务调度模块的执行过程进行分析.Spark Application在遇到Action操作时才会真正的提交任务并进行计算.这时Spark会根据Action操作之前一系列Transform操作的关联关系,生成一个DAG,在后续的操作中,对DAG进行Stage划分,生成Task并最终运行.整个过程如下图所示,DAGScheduler用于对Application进行分析,然后根据各RDD之间的依赖关系划分Stage,根据这些划分好的Stage,对应…
Spark RPC系列: Spark RPC框架源码分析(一)运行时序 Spark RPC框架源码分析(二)运行时序 Spark RPC框架源码分析(三)运行时序 一. Spark rpc框架概述 Spark是最近几年已经算是最为成功的大数据计算框架,那么这次我们就来介绍它内部的一个小点,Spark RPC框架. 在介绍之前,我们需要先说明什么是RPC,引用百度百科: RPC(Remote Procedure Call)-远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层…
一.Spark心跳概述 前面两节中介绍了Spark RPC的基本知识,以及深入剖析了Spark RPC中一些源码的实现流程. 具体可以看这里: Spark RPC框架源码分析(二)运行时序 Spark RPC框架源码分析(一)简述 这一节我们来看看一个Spark RPC中的运用实例--Spark的心跳机制.当然这次主要还是从代码的角度来看. 我们首先要知道Spark的心跳有什么用.心跳是分布式技术的基础,我们知道在Spark中,是有一个Master和众多的Worker,那么Master怎么知道每…
继续前一篇的内容.前一篇内容为: Spark中Client源码分析(一)http://www.cnblogs.com/yourarebest/p/5313006.html DriverClient中的代码比较简单,它只有一个main函数,同时,和AppClient一样,它也有一个ClientEndpoint,只是两者的用途不一样. 1.Client Client中唯一的main方法如下: def main(args: Array[String]) { if (!sys.props.contain…
继续上一篇的内容.上一篇的内容为: Spark中Master源码分析(一) http://www.cnblogs.com/yourarebest/p/5312965.html 4.receive方法,receive方法中消息类型主要分为以下12种情况: (1)重新选择了新Leader,进行数据的恢复 (2)恢复完毕,重新创建Driver,完成资源的重新分配 (3)触发Leadership的选举 (4)Master注册新的Worker (5)Master注册新的App,然后重新分配资源 (6)Ex…
继续前一篇的内容.前一篇内容为: Spark中Worker源码分析(一)http://www.cnblogs.com/yourarebest/p/5300202.html 4.receive方法, receive方法主要分为以下14种情况: (1)worker向master注册成功后,详见代码 (2)worker向master发送心跳消息,如果还没有注册到master上,该消息将被忽略,详见代码 (3)worker的工作空间的清理,详见代码 (4)更换master,详见代码 (5)worker注…