Spark如何删除无效rdd checkpoint】的更多相关文章

spark可以使用checkpoint来作为检查点,将rdd的数据写入hdfs文件,也可以利用本地缓存子系统. 当我们使用checkpoint将rdd保存到hdfs文件时,如果任务的临时文件长时间不删除,长此以往,hdfs会出现很多没有用的文件,spark也考虑到了这一点,因此,用了一些取巧的方式来解决这种问题. spark config: spark.cleaner.referenceTracking.cleanCheckpoints = 默认false 也就是说默认情况下,保存的文件一直都会…
一.JdbcRDD与关系型数据库交互 虽然略显鸡肋,但这里还是记录一下(点开JdbcRDD可以看到限制比较死,基本是鸡肋.但好在我们可以通过自定义的JdbcRDD来帮助我们完成与关系型数据库的交互.这点和Hadoop需要借助sqoop等工具进行是有优势的!) 给出一个demo的参考链接:https://www.2cto.com/database/201705/635388.html 二.RDD依赖关系 1.窄依赖 窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partitio…
RDD算子调优 不废话,直接进入正题! 1. RDD复用 在对RDD进行算子时,要避免相同的算子和计算逻辑之下对RDD进行重复的计算,如下图所示: 对上图中的RDD计算架构进行修改,得到如下图所示的优化结果: 2. 尽早filter 获取到初始RDD后,应该考虑尽早地过滤掉不需要的数据,进而减少对内存的占用,从而提升Spark作业的运行效率. 本文首发于公众号:五分钟学大数据,欢迎围观 3. 读取大量小文件-用wholeTextFiles 当我们将一个文本文件读取为 RDD 时,输入的每一行都会…
概述 checkpoint 的机制保证了需要访问重复数据的应用 Spark 的DAG执行图可能很庞大,task 中计算链可能会很长,这时如果 task 中途运行出错,那么 task 的整个需要重算非常耗时,因此,有必要将计算代价较大的 RDD checkpoint 一下,当下游 RDD 计算出错时,可以直接从 checkpoint 过的 RDD 那里读取数据继续算. 我们先来看一个例子,checkpoint的使用: import org.apache.spark.SparkContext imp…
预览 在高层次上,每一个Spark应用(application)都包含一个驱动程序(driver program),该程序运行用户的主函数(main function),并在集群上执行各种并行操作. Spark提供的主要抽象是一个弹性分布式数据集(resilient distributed dataset,简称RDD),它是在集群节点间进行分区的元素集合,可以并行操作.RDD是通过Hadoop文件系统中的文件创建或者由驱动程序中现有的集合转换得到的,用户可以要求Spark将RDD持久化到内存中,…
Spark操作算子本质-RDD的容错spark模式1.standalone master 资源调度 worker2.yarn resourcemanager 资源调度 nodemanager在一个集群中只能有一个资源调度,如果有两个资源调度的话,master和resourcemanager之间是不通信的,master分配某个资源,resourcemanager是不知道的一个application对应一个driver,driver是用来分配任务的 流程示意分布式文件系统(File system)加…
Spark 允许用户为driver(或主节点)编写运行在计算集群上,并行处理数据的程序.在Spark中,它使用RDDs代表大型的数据集,RDDs是一组不可变的分布式的对象的集合,存储在executors中(或从节点).组成RDDs的对象称为partitions,并可能(但是也不是必须的)在分布式系统中不同的节点上进行计算.Spark cluster manager根据Spark application设置的参数配置,处理在集群中启动与分布Spark executors,用于计算,如下图: Spa…
Spark Streaming揭秘 Day8 RDD生命周期研究 今天让我们进一步深入SparkStreaming中RDD的运行机制.从完整的生命周期角度来说,有三个问题是需要解决的: RDD到底是怎么生成的 具体执行的时候和Spark Core上的执行有所不同 运行之后对RDD如何处理,怎么对已有的RDD进行管理 今天主要聚焦于第一个问题. 从DStream开始 DStream类的注释很明确的说明了,DStream中包含以下内容: DStream依赖的其他DStream(第一个DStream是…
Sub 替换立方米() With Selection.Find .Text = "m3" .Replacement.Text = "mm3" .Forward = True .Wrap = wdFindContinue .Format = True .MatchCase = False .MatchWholeWord = False .MatchByte = False .MatchWildcards = False .MatchSoundsLike = False…
一 简介 spark核心是RDD,官方文档地址:https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds官方描述如下:重点是可容错,可并行处理 Spark revolves around the concept of a resilient distributed dataset (RDD), which is a fault-tolerant colle…
我的代码实践:https://github.com/wwcom614/Spark 1.RDD是Spark提供的核心抽象,全称为Resillient Distributed Dataset,即弹性分布式数据集. 2.RDD在抽象上来说是一种元素集合,包含了数据.它是被分区的,分为多个分区,每个分区分布在集群中的不同节点上,从而让RDD中的数据可以被并行操作.(分布式数据集) 3.RDD通常通过Hadoop上的文件,即HDFS文件或者Hive表,来进行创建:有时也可以通过应用程序中的集合来创建. 4…
Spark编程模型(RDD编程模型) 下图给出了rdd 编程模型,并将下例中用 到的四个算子映射到四种算子类型.spark 程序工作在两个空间中:spark rdd空间和 scala原生数据空间.在原生数据空间里, 数据表现为标量(即scala基本类型,用橘 色小方块表示).集合类型(蓝色虚线 框) 和持久存储(红色圆柱).…
删除无效的括号 删除最小数量的无效括号,使得输入的字符串有效,返回所有可能的结果. 说明: 输入可能包含了除 ( 和 ) 以外的字符. 示例 1: 输入: "()())()" 输出: ["()()()", "(())()"] 示例 2: 输入: "(a)())()" 输出: ["(a)()()", "(a())()"] 示例 3: 输入: ")(" 输出: [&quo…
Leetcode之深度优先搜索(DFS)专题-301. 删除无效的括号(Remove Invalid Parentheses) 删除最小数量的无效括号,使得输入的字符串有效,返回所有可能的结果. 说明: 输入可能包含了除 ( 和 ) 以外的字符. 示例 1: 输入: "()())()" 输出: ["()()()", "(())()"] 示例 2: 输入: "(a)())()" 输出: ["(a)()()",…
consul删除无效实例删除无效服务删除无效节点删除无效服务http://127.0.0.1:8500/v1/agent/service/deregister/test-9c14fa595ddfb8f4c34c673c65b072bb test-9c14fa595ddfb8f4c34c673c65b072bb : 实例idmethod : put 删除无效节点http://127.0.0.1:8500/v1/v1/agent/force-leave/4b36b27317a0 consul lea…
目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常见的转化操作和行动操作 基本RDD 行动操作 不同 RDD 的类型转换 持久化 Spark学习笔记3--RDD(下) 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 向Spark传递函数 大部分 Spark 的转化操作和一部分行动操作,都需要传递函数后进行计算.如…
目录 Spark学习笔记2--RDD(上) RDD是什么? 例子 创建 RDD 并行化方式 读取外部数据集方式 RDD 操作 转化操作 行动操作 惰性求值 Spark学习笔记2--RDD(上) 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> RDD是什么? 弹性分布式数据集(Resilient Distributed Dataset,简称 RDD) Spark 的核心概念 一个不可变的分布式对象集合 每个 RDD 都被分为多个分区运行在集群的不同节点上 RDD…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是spark专题第二篇文章,我们来看spark非常重要的一个概念--RDD. 在上一讲当中我们在本地安装好了spark,虽然我们只有local一个集群,但是仍然不妨碍我们进行实验.spark最大的特点就是无论集群的资源如何,进行计算的代码都是一样的,spark会自动为我们做分布式调度工作. RDD概念 介绍spark离不开RDD,RDD是其中很重要的一个部分.但是很多初学者往往都不清楚RDD究竟是什么,我自己也是一样,我在系统学习s…
301. 删除无效的括号 删除最小数量的无效括号,使得输入的字符串有效,返回所有可能的结果. 说明: 输入可能包含了除 ( 和 ) 以外的字符. 示例 1: 输入: "()())()" 输出: ["()()()", "(())()"] 示例 2: 输入: "(a)())()" 输出: ["(a)()()", "(a())()"] 示例 3: 输入: ")(" 输出:…
Spark练习之创建RDD(集合.本地文件) 一.创建RDD 二.并行化集合创建RDD 2.1 Java并行创建RDD--计算1-10的累加和 2.2 Scala并行创建RDD--计算1-10的累加和 三.使用本地文件和HDFS创建RDD 3.1 Java---使用本地文件创建RDD 3.2 Scala---使用本地文件创建RDD 四.RDD持久化原理 五.不使用RDD持久化的问题的原理 六.RDD持久化工作的原理 七.RDD持久化策略 八.如何选择RDD持久化策略 一.创建RDD 二.并行化集…
PersistenceStreaming没有做特别的事情,DStream最终还是以其中的每个RDD作为job进行调度的,所以persistence就以RDD为单位按照原先Spark的方式去做就可以了,不同的是Streaming是无限,需要考虑Clear的问题在clearMetadata时,在删除过期的RDD的同时,也会做相应的unpersist比较特别的是,NetworkInputDStream,是一定会做persistence的,因为会事先将流数据转化为persist block,然后Netw…
在上一篇文章中 Spark源码系列:DataFrame repartition.coalesce 对比 对DataFrame的repartition.coalesce进行了对比,在这篇文章中,将会对RDD的repartition.coalesce进行对比. RDD重新分区的手段与DataFrame类似,有repartition.coalesce两个方法 repartition def repartition(numPartitions: Int): JavaRDD[T] /** * Return…
一.RDD概述 1.什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 2.RDD属性 1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都会被一个计算任务处…
关于RDD, 详细可以参考Spark的论文, 下面看下源码 A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable, partitioned collection of elements that can be operated on in parallel. * Internally, each RDD is characterized by five main…
RDD RDD初始參数:上下文和一组依赖 abstract class RDD[T: ClassTag]( @transient private var sc: SparkContext, @transient private var deps: Seq[Dependency[_]] ) extends Serializable 下面须要细致理清: A list of Partitions Function to compute split (sub RDD impl) A list of De…
本篇接着谈谈那些稍微复杂的API. 1)   flatMapValues:针对Pair RDD中的每个值应用一个返回迭代器的函数,然后对返回的每个元素都生成一个对应原键的键值对记录 这个方法我最开始接触时候,总是感觉很诧异,不是太理解,现在回想起来主要原因是我接触的第一个flatMapValues的例子是这样的,代码如下: val rddPair: RDD[(String, Int)] = sc.parallelize(List(("x01", 2), ("x02"…
本篇接着讲解RDD的API,讲解那些不是很容易理解的API,同时本篇文章还将展示如何将外部的函数引入到RDD的API里使用,最后通过对RDD的API深入学习,我们还讲讲一些和RDD开发相关的scala语法. 1)  aggregate(zeroValue)(seqOp,combOp)  该函数的功能和reduce函数一样,也是对数据进行聚合操作,不过aggregate可以返回和原RDD不同的数据类型,使用时候还要提供初始值. 我们来看看下面的用法,代码如下: val rddInt: RDD[In…
SparkContext可以通过parallelize把一个集合转换为RDD def main(args: Array[String]): Unit = { val conf = new SparkConf(); val list = List(1, 2, 3, 4, 5,6); conf.set("spark.master", "local") conf.set("spark.app.name", "spark demo")…
RDD: Resilient Distributed Dataset RDD的特点: 1.A list of partitions       一系列的分片:比如说64M一片:类似于Hadoop中的split:   2.A function for computing each split     在每个分片上都有一个函数去迭代/执行/计算它   3.A list of dependencies on other RDDs     一系列的依赖:RDDa转换为RDDb,RDDb转换为RDDc,那…
在Eclipse的maven项目中,点击一次“maven build...”明明没有配置,它也就会产生一个maven build,那么如何删除这些无效的配置呢?…