exgcd 学习笔记】的更多相关文章

@(学习笔记)[扩展欧几里得] 本以为自己学过一次的知识不会那么容易忘记, 但事实证明, 两个星期后的我就已经不会做扩展欧几里得了...所以还是写一下学习笔记吧 问题概述 求解: \[ax + by = (a, b)\] Hint: \((a, b)\)表示\(gcd(a, b)\) 分析解决 根据欧几里得算法(辗转相除法), \[(a, b) = (b, a \% b)\] 所以有\[ax + by = (a, b) = (b, a \% b) = bx' + (a \% b)y'\] 故我们…
扩展欧几里得算法是当已知a和b时,求得一组x和y使得 首先,根据数论中的相关定理,解一定存在        //留坑待填 之后我们可以推一推式子 将a替换掉 展开括号 提出b,合并 且 设 现在已经将原来的式子转化为一个小一点的问题了 当  b = 0 时,则有 x = 1 , y = 0 之后递归回去就可以求得最终的x和y了 整理上面的和可以得到: 之后代码就很好写了 int exgcd(int a,int b,int &x,int &y){ if(b==0){ x=1; y=0; re…
exgcd 由于忘记了exgcd,这道题就没做出来... exgcd的用处是求ax+by=gcd(a,b)这样方程的解 大概是这个样子的 void ext_gcd(long long a, long long b, long long &x, long long &y) { ) { x = ; y = ; } else { ext_gcd(b, a % b, y, x); y -= x * (a / b); } } 证明大概是ax+by=gcd(a,b) 根据gcd的性质bx'+(a%b)…
最大公约数 更相减损术:\(\gcd(x,y)=\gcd(x,y-x)(x\leq y)\). 证明: 设 \(\gcd(x,y)=k\),则 \(x=kp,y=kq,\gcd(p,q)=1\). 那么 \(\gcd(x,y-x)=\gcd(kp,kq-kp)=k\times\gcd(p,q-p)\). 设 \(\gcd(p,q-p)=r\),则 \(p=ra,q-p=rb\). 那么 \(q=r(a+b)\). 因为 \(\gcd(p,q)=1=\gcd(ra,r(a+b))\). 所以 \(…
前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这么抽象的东西我怎么可能会写 前置技能 gcd/lcm exgcd 快速乘 参考资料 一篇未通过的洛谷日报 by AH_ljq 比较直观的 exCRT 学习笔记 by Milky Way 我之前写过的 exgcd 学习笔记 huyufeifei 对 CRT 的劝退 用途 用于求一个关于 \(x​\)…
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Robin+Pollard_Rho) 本文概要 1. 基础回顾 2. 中国剩余定理 (CRT) 及其扩展 3. 卢卡斯定理 (lucas) 及其扩展 4. 大步小步算法 (BSGS) 及其扩展 5. 原根与指标入…
exLucas学习笔记 Tags:数学 写下抛硬币和超能粒子炮改 洛谷模板代码如下 #include<iostream> #define ll long long using namespace std; void exgcd(int a,int b,int &x,int &y) { if(b==0) {x=1;y=0;return;} exgcd(b,a%b,y,x);y-=a/b*x; } struct ex_lucas { int p,pk,jc[1000001]; vo…
基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\gcd(x,y)\) 裴蜀定理 定理:对于方程\(ax+by=c\),其存在解的充要条件是\(gcd(a,b)|c\),可以拓展到n元的方程. 证明的话应该自己yy一下还是很容易(显然可得),不过要是想要严谨证明还是去百度吧qwq 扩展欧几里得定理 首先我们都知道\(gcd(a,b)=gcd(b,a…
点亮技能树行动-- 本篇blog按照分类将网上写的OI知识点归纳了一下,然后会附上蒟蒻我的学习笔记或者是我认为写的不错的专题博客qwqwqwq(好吧,其实已经咕咕咕了...) 基础算法 贪心 枚举 分治 倍增 构造 高精 模拟 图论 图 最短路,次短路 k短路 差分约束 最小生成树 拓扑排序 欧拉图 二分图染色,二分图匹配 最大团,最大独立集 tarjan找scc.桥.割点,缩点 网络流 最大流,最小割,费用流 有上下界的网络流 分数规划 2-SAT 树 LCA 最近公共祖先 树的直径 树的重心…
「ExLucas」学习笔记 前置芝士 中国剩余定理 \(CRT\) \(Lucas\) 定理 \(ExGCD\) 亿点点数学知识 给龙蝶打波广告 Lucas 定理 \(C^m_n = C^{m\% mod}_{n\% mod} \times C^{\frac{m}{mod}}_{\frac{n}{mod}}\) 适用条件 给出的数据范围较大(无法用线性求出) 模数很烂的时候(会使阶乘中出现 \(0\)) \(mod\) 必须为质数 证明 证明很恶心,略. 模板 某谷P4720 #include…