SVM,中文名叫支持向量机. 在深度学习出现以前,它是数据挖掘的宠儿: SVM具有十分完整的数据理论证明,但同时理论也相当复杂. 初识SVM 同其他分类算法一样,SVM分类也是寻找合适的决策边界,为方便理解,以二分类为例. 假设存在二分类样本,我们一定可以找到一个超平面将类别分开,但是通常会存在很多这样的超平面. 那取哪个呢? 直观感受 直观来看,应该取中间那条粗线,因为这条线对样本的“容忍性”最好,也就是说样本发生微小变化,不会影响分类结果,但是其他细线,如果样本发生微小变化,都会使得分类结…