论文标题:Online Human Action Recognition Based on Incremental Learning of Weighted Covariance Descriptors 来源/作者机构情况: 卧龙岗大学(世界排名230~),第一次听说这个学校.竟然是在澳大利亚的一个学校.好吧,华人果然全球了 李老师是本硕都是浙大的,李老师个人链接如下: https://www.uow.edu.au/~wanqing/#UOWActionDatasets 解决问题/主要思想贡献:…
https://towardsdatascience.com/real-time-and-video-processing-object-detection-using-tensorflow-opencv-and-docker-2be1694726e5 https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/ https://www.pyimagesearch.com/2017/09/18/real-t…
论文标题:Action recognition based on 2D skeletons extracted from RGB videos 发表时间:02 April 2019 解决问题/主要思想:来源:谷歌最新论文推荐,来自全球排名大概550名的蒙斯大学 使用openPose对图像提取关键点,然后计算关键点的信息,分成三个矩阵,输入网络训练,从而对动作进行分类 成果/优点:  the highest accuracy which is 83.317% with ResNet152 in c…
简介: 这是一片发表在TPAMI上的文章,可以看见作者有余凯(是百度的那个余凯吗?) 本文提出了一种3D神经网络:通过在神经网络的输入中增加时间这个维度(连续帧),赋予神经网络行为识别的功能. 相应提出了一种3D卷积,对三幅连续帧用一个3D卷积核进行卷积(可以理解为用三个二维卷积核卷积三张图). 3D神经网络结构图: input—>H1 神经网络的输入为7张大小为60*40的连续帧,7张帧通过事先设定硬核(hardwired kernels)获得5种不同特征:灰度.x方向梯度.y方向梯度.x方向…
转自:http://blog.csdn.net/kezunhai/article/details/50176209 ================华丽分割线=================这部分来自知乎==================== 链接:http://www.zhihu.com/question/33272629/answer/60279003 有关action recognition in videos, 最近自己也在搞这方面的东西,该领域水很深,不过其实主流就那几招,我就班门…
CVPR2019 1.An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition 作者:Chenyang Si, Wentao Chen, Wei Wang, Liang Wang, Tieniu Tan 论文链接:https://arxiv.org/abs/1902.09130 2.Improving the Performance of Unimodal Dynami…
================华丽分割线=================这部分来自知乎==================== 链接:http://www.zhihu.com/question/33272629/answer/60279003 有关action recognition in videos, 最近自己也在搞这方面的东西,该领域水很深,不过其实主流就那几招,我就班门弄斧说下video里主流的: Deep Learning之前最work的是INRIA组的Improved Dense…
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28  15:45:13  研究背景和动机: 行人动作识别(Human Action Recognition)主要从多个模态的角度来进行研究,即:appearance,depth,optical-flow,以及 body skeletons.这其中,动态的人类骨骼点 通常是最具有信息量的,且能够和其他模态进行互补.…
基于在线学习的单目标跟踪算法调研 摘要 视觉跟踪在计算机视觉和机器人学领域是一个流行和有挑战的话题.由于多种场景下出现的目标外貌和复杂环境变量的改变,先进的跟踪框架就有必要采用在线学习的原理.本论文简要的介绍了一下关于视觉跟踪的挑战和应用,通过分类集中讨论基于在线学习的现代跟踪方法.我们提供了对每种分类中的代表性方法的详细描述,同时检查它们的优点和缺点.而且,一些最具代表性的算法被实现,来提供定量的参考.最后,我们列出了几个关于视觉跟踪研究的未来发展趋势. 1    引言 <未翻译> 2 生成…
要读的论文: https://www.cnblogs.com/hizhaolei/p/10565405.html 骨架动作识别论文汇总 https://blog.csdn.net/bianxuewei1238/article/details/84936883 AAAI 2018 行为识别论文概览 https://zhuanlan.zhihu.com/p/34322114 已经阅读的论文: 2019年: Action recognition based on 2D skeletons extrac…