hive 调优手段】的更多相关文章

Hive调优手段 最常用的调优手段 Fetch抓取 MapJoin 分区裁剪 列裁剪 控制map个数以及reduce个数 JVM重用 数据压缩 Fetch的抓取 出现原因 Hive中对某些情况的查询不必使用MapReduce计算.在这种情况下,Hive可以简单地读取employee对应的存储目录下的文件,然后输出查询结果到控制台.(原则就是能不用MapReduce就不用MapReduce) 比如以下这几种情况: SELECT * FROM score; SELECT s_score FROM s…
调优手段 ()利用列裁剪 当待查询的表字段较多时,选取需要使用的字段进行查询,避免直接select *出大表的所有字段,以免当使用Beeline查询时控制台输出缓冲区被大数据量撑爆. ()JOIN避免笛卡尔积 JOIN场景应严格避免出现笛卡尔积的情况.参与笛卡尔积JOIN的两个表,交叉关联后的数据条数是两个原表记录数之积,对于JOIN后还有聚合的场景而言,会导致reduce端处理的数据量暴增,极大地影响运行效率. 以下左图为笛卡尔积,右图为正常Join. ()启动谓词下推 谓词下推(Predic…
 MySQL常用的sql调优手段或工具有哪些1.根据执行计划优化   通常使用desc或explain,另外可以添加format=json来输出更详细的json格式的执行计划,主要注意点如下:    1.1.type:显示关联类型.重点关注ALL(全表扫描).index(全索引扫描):    1.2.key_len:使用到索引的长度.通常该值大于30就要注意被选中的索引是否字符串类型,可否进一步优化:    1.3.rows:预估扫描的行数.通常该值大于1万就要注意可否选择更合适的索引减少扫描的…
Hive调优 Hive调优 Fetch抓取 本地模式 表的优化 小表.大表Join 大表Join大表 MapJoin Group By Count(Distinct) 去重统计 行列过滤 动态分区调整 案例实操 数据倾斜 Map数 小文件进行合并 复杂文件增加Map数 Reduce数 并行执行 严格模式 JVM重用 推测执行 执行计划(Explain) Fetch抓取 Fetch抓取是指:Hive中对某些情况的查询可以不必使用MapReduce计算 例如:SELECT * FROM employ…
数据倾斜即为数据在节点上分布不均,是常见的优化过程中常见的需要解决的问题.常见的Hive调优的方法:列剪裁.Map Join操作. Group By操作.合并小文件. 一.表现 1.任务进度长度为99%,在任务监控页面中发现只有几个 reduce 子任务未完成: 2.单一 reduce 记录与平均记录数差异过大(大于3倍),最长时长>>平均时长: 3.job数多的,效率低,多次关联后,产生几个jobs,起码半小时以上才跑完: 二.原因 1.key分布不均: 2.业务数据本身问题: 3.建表有问…
目录 一.python的内存机制 二.python的垃圾回收 1. 引用计数 1.1 原理: 1.2 优缺点: 1.4 两种情况: 2. 标记清除 2.1 原理: 2.2 优缺点: 3. 分代回收 3.1 原理: 4. 三种情况触发垃圾回收: 5. 小整数对象池与intern机制 三.调优手段 1. 手动垃圾回收 2. 调高垃圾回收阈值 3. 避免循环引用 3.1 手动解循环引用 3.2 使用弱引用 一.python的内存机制 python中的内存机制 如下所示: _____ ______ __…
Hive调优 先记录了这么多,日后如果有遇到,再补充. fetch模式 <property> <name>hive.fetch.task.conversion</name> <value>more</value> <description> Expects one of [none, minimal, more]. Some select queries can be converted to single FETCH task mi…
hive 调优(二)参数调优汇总 在hive调优(一) 中说了一些常见的调优,但是觉得参数涉及不多,补充如下 1.设置合理solt数 mapred.tasktracker.map.tasks.maximum 每个tasktracker可同时运行的最大map task数,默认值2. mapred.tasktracker.reduce.tasks.maximum 每个tasktracker可同时运行的最大reduce task数,默认值1. 2.配置磁盘块 mapred.local.dir map…
hive 调优(一)coding调优 本人认为hive是很好的工具,目前支持mr,tez,spark执行引擎,有些大公司原来封装的sparksql,开发py脚本,但是目前hive支持spark引擎(不是很稳定,建议Tez先),所以离线还是用hive比较好. 先将工作中总结,以及学习其他人的hive优化总结如下: 一. 表连接优化 这是比较常见的问题 1.  将大表放后头 Hive假定查询中最后的一个表是大表.它会将其它表缓存起来,然后扫描最后那个表. 因此通常需要将小表放前面,或者标记哪张表是大…
在hive调优(一) 中说了一些常见的调优,但是觉得参数涉及不多,补充如下 1.设置合理solt数 mapred.tasktracker.map.tasks.maximum 每个tasktracker可同时运行的最大map task数,默认值2. mapred.tasktracker.reduce.tasks.maximum 每个tasktracker可同时运行的最大reduce task数,默认值1. 2.配置磁盘块 mapred.local.dir map task中间结果写本地磁盘路径,默…