Self-Attention与Transformer】的更多相关文章

目录 Transformer引入 Encoder 详解 输入部分 Embedding 位置嵌入 注意力机制 人类的注意力机制 Attention 计算 多头 Attention 计算 残差及其作用 BatchNorm 和 LayerNorm 前馈神经网络 Decoder 详解 Transformer 最终输出 TRM 面试题讲解 RNN.LSTM.Transformer 三者的区别? 为什么有缩放因子 [公式] ?attention为什么scaled? Decoder端的Mask 如何 mask…
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原理解析 6. 从Encoder-Decoder(Seq2Seq)理解Attention的本质 1. 前言 谷歌在2017年发表了一篇论文名字教Attention Is All You Need,提出了一个只基于attention的结构来处理序列模型相关的问题,比如机器翻译.传统的神经机器翻译大都是利…
目录: 1. 前提 2. attention (1)为什么使用attention (2)attention的定义以及四种相似度计算方式 (3)attention类型(scaled dot-product attention \ multi-head attention) 3. self-attention (1)self-attention的计算 (2) self-attention如何并行 (3) self-attention的计算总结 (4) self-attention的类型(multi-…
Transformer 本文介绍了Transformer结构, 是一种encoder-decoder, 用来处理序列问题, 常用在NLP相关问题中. 与传统的专门处理序列问题的encoder-decoder相比, 有以下的特点: 结构完全不依赖于CNN和RNN 完全依赖于self-attention机制, 是一种堆叠的self-attention 使用全连接层 逐点point-wise计算的 整个Transformer的结构图如下所示: Encoder and Decoder Stacks 如上…
Attention & Transformer seq2seq; attention; self-attention; transformer; 1 注意力机制在NLP上的发展 Seq2Seq,Encoder,Decoder 引入Attention,Decoder上对输入的各个词施加不同的注意力 https://wx1.sbimg.cn/2020/09/15/9FZGo.png Self-attention,Transformer,完全基于自注意力机制 Bert,双向Transformer,ma…
原创作者 | 疯狂的Max 01 背景及动机 Transformer是目前NLP预训练模型的基础模型框架,对Transformer模型结构的改进是当前NLP领域主流的研究方向. Transformer模型结构中每层都包含着残差结构,而残差结构中最原始的结构设计是Post-LN结构,即把Layer Norm (LN) 放在每个子层处理之后,如下图Figure 1(a)所示:而其他的一些预训练模型如GPT-2,则将LN改到每个子层处理之前,被定义为Pre-LN,如下图Figure 1(b),有论文[…
https://blog.csdn.net/mijiaoxiaosan/article/details/73251443 本文参考的原始论文地址:https://arxiv.org/abs/1706.03762 谷歌昨天在arxiv发了一篇论文名字教Attention Is All You Need,提出了一个只基于attention的结构来处理序列模型相关的问题,比如机器翻译.传统的神经机器翻译大都是利用RNN或者CNN来作为encoder-decoder的模型基础,而谷歌最新的只基于Atte…
Link of the Paper: https://arxiv.org/abs/1706.03762 Motivation: The inherently sequential nature of Recurrent Models precludes parallelization within training examples. Attention mechanisms have become an integral part of compelling sequence modeling…
主流的序列到序列模型都是基于含有encoder和decoder的复杂的循环或者卷积网络.而性能最好的模型在encoder和decoder之间加了attentnion机制.本文提出一种新的网络结构,摒弃了循环和卷积网络,仅基于attention机制. self-attention是一种attention机制,它是在单个序列中计算每个位置与其他不同位置关系从而计算序列.Transformer是第一个完全依靠self-attention机制来计算输入和输出表示. 模型架构     encoder 编码…
在学习深度学习过程中很多讲的不够细致,这个讲的真的是透彻了,转载过来的,希望更多人看到(转自-张贤同学-公众号). 前言 本文翻译自 http://jalammar.github.io/illustrated-transformer ,是笔者看过的把 Transformer 讲解得最好的文章.这篇文章从输入开始,一步一步演示了数据在 Transformer 中的流动过程.由于看过一些中文翻译的文章,感觉不够好,所以我自己翻译了一个版本,在一些难以直译的地方,我加入了一些原文没有的文字说明,来更好…