Riemann映射定理】的更多相关文章

单复变函数几何理论最高的成就我想应该属于Riemann映射定理吧! Riemann映射定理:$\mathbb C$中任意边界多余一个点的单连通域$D$都与单位圆盘$B(0,1)$等价,即存在着$D$上的单叶全纯函数$f$使得$f(D)=B(0,1)$.而且$f$被如下条件所唯一确定:$$f(a)=0,{\rm arg}f'(a)=\theta$$其中$a$为$D$中任意一点,$\theta$为任意实数. 特别的可以要求$f$不仅双全纯的把$D$映成$B(0,1)$,且可以将$D$中指定的一点$a…
1 Riemann 积分的局限性 (1) Riemann 积分与极限的条件太严:    $$\bex    f_k\rightrightarrows f\ra \lim \int_a^b f_k    =\int_a^b \lim f_k.    \eex$$ 这 ``一致收敛'' 极大地限制了 Riemann 积分的应用. (2) 积分运算不完全是微分运算的逆运算:    $$\bex    f\mbox{ 在 }x\mbox{ 连续}\ra \frac{\rd}{\rd x}\int_a^x…
1 记号: 一元函数 $f$ 在 $[a,b]$ 上的 (1)Riemann 积分: $\dps{(R)\int_a^b f(x)\rd x}$; (2)Lebesgue 积分: $\dps{(L)\int_{[a,b]}f(x)\rd x}$. 2回忆 (1)Riemann 积分: 对函数 $f:[a,b]\to \bbR$ 及 $[a,b]$ 的任一分划 $$\bex T:\ a=x_0<x_1<\cdots<x_n=b,\quad\sex{\mbox{细度 }\sen{T}=\ma…
上承这个页面,相较之前,增加了古典的曲线曲面论,这部分介绍得很扼要,Riemann流形介绍得也很快,花了仅仅30页就介绍到了Gauss-Bonnet公式.同时配上了提示完整的习题. 几何学观止-Riemann流形部分(20181019).pdf 之后因为想要多学一些数学和法语,本书不会立刻更新.…
Riemann monitors distributed systems. 具体介绍就不多说了,一个分布式的监控系统.可以接收各种event上报,然后通过强大的脚本和插件,展示曲线,柱状,饼图等来对系统进行监控. 一.riemann安装 这里主要说ubuntu的安装: 首先,需要java.ruby环境:sudo apt-get -y install default-jre ruby-dev build-essential 然后下载riemann的包: wget https://aphyr.com…
黎曼曲面Riemann Surface A Riemann surface is a surface-like configuration that covers the complex plane with several, and in general infinitely many, "sheets." These sheets can have very complicated structures and interconnections (Knopp 1996, pp. 9…
设 $f(x)$ 是 $[0,\infty)$ 上的单调函数, 则对任意固定的 $a$, 有 $\dps{\vlm{n}\int_0^a f(x)\sin nx\rd x =0}$; 若同时还有 $\dps{\vlm{x}f(x)=0}$, 则 $\dps{\vlm{n}\int_0^\infty f(x)\sin nx\rd x=0}$. 证明: (1) 由积分第二中值定理知 $$\beex \bea \sev{\int_0^a f(x)\sin nx\rd x} &=\sev{f(0)\in…
今天(准确地说是昨天)被学物理的同学问到Stokes定理,想起来我还有一个知道但没有细看的东西,下面整理成提示完整的习题记录一下. 这部分内容将会加进几何学观止,敬请期待.目前正在纂写代数几何簇的部分.…
齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在自然语言的语料库里,一个单词出现的频率与它在频率表里的排名成反比. 所以,频率最高的单词出现的频率大约是出现频率第二位的单词的2倍, 而出现频率第二位的单词则是出现频率第四位的单词的2倍. 这个定律被作为任何与幂定律概率分布有关的事物的参考. 目录 1 例子 2 遵循该定律的现象 3 参见 4 延伸…