使用python3 学习sklearn中支持向量机api的使用 可以来到我的git下载源代码:https://github.com/linyi0604/MachineLearning # 导入手写字体加载器 from sklearn.datasets import load_digits from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler fr…
我想大部分程序员的第一个程序应该都是“hello world”,在深度学习领域,这个“hello world”程序就是手写字体识别程序. 这次我们详细的分析下手写字体识别程序,从而可以对深度学习建立一个基本的概念. 1.初始化权重和偏置矩阵,构建神经网络的架构 import numpy as np class network(): def __init__(self, sizes): self.num_layers = len(sizes) self.sizes = sizes self.bia…
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 softmax   这里用到的tf基本知识 tf.tensor-张量,其实就是矩阵.官方说法是原料 tf.Varible-变量,用来记录数据,参数.其实也是个矩阵.不过要初始化后才有具体的值 tf.Session()-会话,就是个模型,我们可以在里面添加数据流动方向,运算节点 香农熵 香农熵是计算信息…
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- coding: utf-8 -*- """ Created on Fri May 25 14:09:45 2018 @author: Administrator """ #导入数据集 from tensorflow.examples.tutoria…
看完一节<机器学习实战>,算是踏入ML的大门了吧!这里就详细讲一下一个demo:使用kNN算法实现手写字体的简单识别 kNN 先简单介绍一下kNN,就是所谓的K-近邻算法: [作用原理]:存在一个样本数据集合.每个样本数据都存在标签.输入没有标签的新数据后,将新数据的每个特征与样本集数据的对应特征进行比较,然后算法提取样本集中最相似的分类标签.一般说来,我们只选择样本数据集中前k个最相似的数据,最后,选择这k个相似数据中出现次数最多的分类,作为新数据的分类. 通俗的说,举例说明:有一群明确国籍…
前言: SVM(支持向量机)一种训练分类器的学习方法 mnist 是一个手写字体图像数据库,训练样本有60000个,测试样本有10000个 LibSVM 一个常用的SVM框架 OpenCV3.0 中的ml包含了很多的ML框架接口,就试试了. 详细的OpenCV文档:http://docs.opencv.org/3.0-beta/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html mnist数据下载:http://yann.l…
利用平pytorch搭建简单的神经网络实现minist手写字体的识别,采用三层线性函数迭代运算,使得其具备一定的非线性转化与运算能力,其数学原理如下: 其具体实现代码如下所示:import torchimport matplotlib.pyplot as pltdef plot_curve(data): #曲线输出函数构建 fig=plt.figure() plt.plot(range(len(data)),data,color="blue") plt.legend(["va…
1.获取mnist数据集,得到正确的数据格式 mnist = input_data.read_data_sets('MNIST_data',one_hot=True) 2.定义网络大小:图片的大小是28*28,784个像素点,输入神经元为784个,输出0~9个数,输出神经元为10个 n_input =784n_layer1 = 10examples_to_show = 10 #显示的测试图像个数 x_data = tf.placeholder(tf.float32,[None,n_input])…
从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png.tar.gz文件 文件夹内包括两个文件夹:training和validation,其中training文件夹下包括60000个训练图片validation下包括10000个评估图片,图片为28*28像素,分别放在0~9十个文件夹中. 程序总体流程和上一篇文章介绍的BMI分析程序基本一致,毕竟都是多元…
目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积层2 (5)搭建全连接层3 (6)搭建输出层 2.2 训练和评估模型 三.结果 3.1 训练过程 3.2 测试过程 四.讨论与结论 一.背景介绍 1.1 卷积神经网络 近年来,深度学习的概念非常火热.深度学习的概念最早由Hinton等人在2006年提出.基于深度置信网络(DBN),提出非监督贪心逐层…
一.kNN算法是机器学习的入门算法,其中不涉及训练,主要思想是计算待测点和参照点的距离,选取距离较近的参照点的类别作为待测点的的类别. 1,距离可以是欧式距离,夹角余弦距离等等. 2,k值不能选择太大或太小,k值含义,是最后选取距离最近的前k个参照点的类标,统计次数最多的记为待测点类标. 二.关于kNN实现手写数字识别 1,手写数字训练集测试集的数据格式,本篇文章说明的是<机器学习实战>书提供的文件,将所有数字已经转化成32*32灰度矩阵. 三.代码结构构成 1,data_Prepare.py…
通过: 手写数字识别  ----卷积神经网络模型官方案例详解(基于Tensorflow,Python) 手写数字识别  ----Softmax回归模型官方案例详解(基于Tensorflow,Python) 运行程序后得的四个文件,再通过手写的图片判断识别概率 代码: import numpy as np import tensorflow as tf from flask import Flask, jsonify, render_template, request import numpy a…
# 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/6052541.html from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets("/tmp/data/", one_hot=True) '''获取程序集'''…
# 手写数字识别 ----Softmax回归模型 # regression import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets("/tmp/data/", one_hot=True) # 获取数据 mnist是一个轻量级的类,其中以Numpy数组的形式中存储着训练集.验证集.测试集. #…
手写数字识别是机器学习里面的一个经典问题,今天就这一段时间学习的机器学习,花一个下午茶的时间,试试机器学习. 首先数据库是在MNIST(http://yann.lecun.com/exdb/mnist/)下载下来的.下载下来的数据如下图所示.官方有给出数据怎么读取,我自己没有仔细看,因为我看到网上有人公布代码如何读取. 可以看到前四个是测试数据,后四个是训练数据. 这里我用matlab尝试读取这些数据. 首先看两个function. loadMNISTImages.m function imag…
参考: 原视频:李宏毅机器学习-Keras-Demo 调参博文1:深度学习入门实践_十行搭建手写数字识别神经网络 调参博文2:手写数字识别---demo(有小错误) 代码链接: 编程环境: 操作系统:win7 - CPU anaconda-Python3-jupyter notebook tersonFlow:1.10.0 Keras:2.2.4 背景: 视频里宝可梦大师提供的部分参数设置不能得到好的结果,这里记录一下后续调参 1-载入数据报错的问题: 载入数据运行时报错:[WinError 1…
一.问题与解决方案 通过多元分类算法进行手写数字识别,手写数字的图片分辨率为8*8的灰度图片.已经预先进行过处理,读取了各像素点的灰度值,并进行了标记. 其中第0列是序号(不参与运算).1-64列是像素值.65列是结果. 我们以64位像素值为特征进行多元分类,算法采用SDCA最大熵分类算法. 二.源码 先贴出全部代码: namespace MulticlassClassification_Mnist { class Program { static readonly string TrainDa…
一.概述 上一篇文章我们利用ML.NET的多元分类算法实现了一个手写数字识别的例子,这个例子存在一个问题,就是输入的数据是预处理过的,很不直观,这次我们要直接通过图片来进行学习和判断.思路很简单,就是写一个自定义的数据处理通道,输入为文件名,输出为float数字,里面保存的是像素信息. 样本包括6万张训练图片和1万张测试图片,图片为灰度图片,分辨率为20*20 .train_tags.tsv文件对每个图片的数值进行了标记,如下: 二.源码 全部代码: namespace MulticlassCl…
这里我们讲一下使用HOG的方法进行手写数字识别: 首先把 代码分享出来: hog1.m function B = hog1(A) %A是28*28的 B=[]; [x,y] = size(A); %外圈补0 A(:,y+) = ; A(x+,:) = ; :x deltax(:,i)=A(:,i+)-A(:,i); end :y deltay(i,:)=A(i+,:)-A(i,:); end : : Px=deltax(i*-:i*+,j*-:j*+); Py=deltay(i*-:i*+,j*…
Atitit s2018.2 s2 doc list on home ntpc.docx \Atiitt uke制度体系  法律 法规 规章 条例 国王诏书.docx \Atiitt 手写文字识别  讯飞科大 语音云.docx \Atitit 代码托管与虚拟主机.docx \Atitit 企业文化  每日心灵 鸡汤 值班 发布.docx \Atitit 几大研发体系对比 Stage-Gate体系  PACE与IPD体系 敏捷开发体系 CMMI体系.docx \Atitit 存储管理  数据库文件…
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识      为什么要用神经网络? 特征提取的高效性.…
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Overview 本文系“SkySeraph AI 实践到理论系列”第一篇,咱以AI界的HelloWord 经典MNIST数据集为基础,在Android平台,基于TensorFlow,实现CNN的手写数字识别.Code~ Practice Environmen…
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档前链数目.文档锚文本信息,为找特征隐藏信息,隐藏层神经元数目设置少于输入特征数目,经大量样本训练能还原原始特征模型,相当用少于输入特征数目信息还原全部特征,压缩,可发现某些特征之间存在隐含相关性,或者有某种特殊关系.让隐藏层神经元数目多余输入特征数目,训练模型可展示特征之间某种细节关联.输出输入一致…
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识别(二)--入门篇 基于tensorflow的MNIST手写数字识别(三)--神经网络篇 一.本文的意义 因为谷歌官方其实已经写了MNIST入门和深入两篇教程了,那我写这些文章又是为什么呢,只是抄袭?那倒并不是,更准确的说应该是笔记吧,然后用更通俗的语言来解释,并且补充更多,官方文章中没有详细展开的…
官方文档: MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners Deep MNIST for Experts - https://www.tensorflow.org/get_started/mnist/pros 版本: TensorFlow 1.2.0 + Flask 0.12 + Gunicorn 19.6 相关文章: TensorFlow 之 入门体验 TensorFlow 之 手写…
http://gitbook.cn/gitchat/column/59f7e38160c9361563ebea95/topic/59f7e86d60c9361563ebeee5 wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html 一.简介 手写图片识别的实现,分为三步: 1,数据的准备 2,模型的设计 3,代码实现 我的另一篇博文-神经网络的解释 什么是神经网络 input层代表将二维数组从所有行都排…
目录 手写数字识别应用程序 一.导入模块 二.图像转向量 三.训练并测试模型 四.模型转应用程序 4.1 展示图片 4.2 处理图片 4.3 预测图片 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 手写数字识别应用程序 一.导入模块 import os import pylab import numpy as np from PIL import Image imp…
一.前言 为了更好的理解Neural Network,本文使用Tensorflow实现一个最简单的神经网络,然后使用MNIST数据集进行测试.同时使用Tensorboard对训练过程进行可视化,算是打响学习Tensorflow的第一枪啦. 看本文之前,希望你已经具备机器学习和深度学习基础. 机器学习基础可以看我的系列博文: https://cuijiahua.com/blog/ml/ 深度学习基础可以看吴恩达老师的公开课: http://mooc.study.163.com/smartSpec/…
引言 这段时间来,看了西瓜书.蓝皮书,各种机器学习算法都有所了解,但在实践方面却缺乏相应的锻炼.于是我决定通过Kaggle这个平台来提升一下自己的应用能力,培养自己的数据分析能力. 我个人的计划是先从简单的数据集入手如手写数字识别.泰坦尼克号.房价预测,这些目前已经有丰富且成熟的方案可以参考,之后关注未来就业的方向如计算广告.点击率预测,有合适的时机,再与小伙伴一同参加线上比赛. 数据集 介绍 MNIST ("Modified National Institute of Standards an…
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型,常用层的Dense全连接层.Activation激活层和Reshape层.还有其他方法训练手写数字识别模型,可以基于pytorch实现的,<Pytorch实现基于卷积神经网络的面部表情识别(详细步骤)> 这篇就是基于pytorch实现,pytorch里也封装了mnist的数据集,实现方法应该类似…