PCA人脸识别的python实现】的更多相关文章

这几天看了看PCA及其人脸识别的流程,并在网络上搜相应的python代码,有,但代码质量不好,于是自己就重新写了下,对于att_faces数据集的识别率能达到92.5%~98.0%(40种类型,每种随机选5张训练,5张识别),全部代码如下,不到50行哦. # -*- coding: utf-8 -*- import numpy as np import os, glob, random, cv2 def pca(data,k): data = np.float32(np.mat(data)) r…
大家都说gabor做人脸识别是传统方法中效果最好的,这几天就折腾实现了下,网上的python实现实在太少,github上的某个版本还误导了我好几天,后来采用将C++代码封装成dll供python调用的方式,成功解决. 图像经多尺度多方向的gabor变换后,gabor系数的数目成倍上升,所以对gabor系数必须进行降维才能送至后续的SVM分类器.测试图像使用att_faces数据集(40种类型,每种随机选5张训练,5张识别),降维方式我测试了DCT.PCA两种变换方式,说实话,dct不怎么靠谱,居…
这几天看了看LBP及其人脸识别的流程,并在网络上搜相应的python代码,有,但代码质量不好,于是自己就重新写了下,对于att_faces数据集的识别率能达到95.0%~99.0%(40种类型,每种随机选5张训练,5张识别),全部代码如下,不到80行哦. #coding:utf-8 import numpy as np import cv2, os, math, os.path, glob, random g_mapping=[ 0, 1, 2, 3, 4, 58, 5, 6, 7, 58, 5…
代码地址如下:http://www.demodashi.com/demo/12011.html 之前公司项目需要,研究了一下人脸识别和活体识别,并运用免费的讯飞人脸识别,在其基础上做了二次开发,添加了活体识别.项目需要就开发了张嘴和摇头两个活体动作的识别. 这里简单介绍一下当时的开发思路和一些个人拙见,欢迎大神指点. 首先说一下讯飞第三方的人脸识别的几个缺点:1.识别不稳定,各点坐标跳动偏差比较大,不容易捕捉:2.CPU使用率比较高,连续识别一会儿手机会明显发烫,手机配置低的,就会反应很慢,本人…
 前言 在PCA人脸识别中我们把一个人脸图片看做一个特征向量,PCA做的事情就是:找到这样一组基向量来表示已有的数据点,不仅仅是将高维度数据变成低维度数据,更能够找到最关键信息. 假设已有数据{xi},i=1,2,...,n,pca希望能够找到一组基向量使得这些数据向量在基向量上的分量(长度,投影)最大 1. 在人脸识别正文开始前,介绍PCA算法原理及数学实例: 2. 举一个pca手工计算实例如下 所以主成分是Z1 3.协方差矩阵怎么算的? 附求解协方差矩阵的一个数学实例 正文 将pca应用于人…
大家看了之后,可以点一波关注或者推荐一下,以后我也会尽心尽力地写出好的文章和大家分享. 本文先导:在我们平时看NBA的时候,可能我们只关心球员是否能把球打进,而不太关心这个球的颜色,品牌,只要有3D效果,看到球员扣篮的动作就可以了,比如下图: 如果我们直接对篮球照片进行几百万像素的处理,会有几千维甚至几万维的数据要计算,计算量很大.而往往我们只需要大概勾勒出篮球的大概形状就可以描述问题,所以必须对此类数据降维,这样会使处理数据更加轻松.这个在人脸识别中必须要降维,因为我们在做特征提取的时候几万维…
人脸数据来自http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html 实现代码和效果如下.由于图片数量有限(40*10),将原有图片顺序打乱进行检测. 可见马氏距离效果最佳. [以下公式和文字来自John Hany的博文 http://johnhany.net/2016/05/from-qr-decomposition-to-pca-to-face-recognition/] PCA(Principal Component…
"Dlib 是一个现代化的 C ++ 工具包,包含用于创建复杂软件的机器学习算法和工具 " .它使您能够直接在 Python 中运行许多任务,其中一个例子就是人脸检测. 安装 dlib 并不像只做一个 "pip install dlib" 那么简单,因为要正确配置和编译 dlib ,您首先需要安装其他系统依赖项.如果你按照这里描述的步骤,它应该很容易让 dlib 启动并运行.(在本文中,我将介绍如何在 Mac 上安装 dlib ,但如果您使用的是 Ubuntu ,请…
用python来做人脸识别代码量少 思路清晰, 在使用之前我们需要在我们的配置的编译器中通过pip install baidu-aip  即可 from aip import AipFace 就可以开始使用api了 我们第一次接触这个东西不妨 help(AipFace) 你就可以看到他所支持的功能. 在使用之前我们需要在百度的后台创建应用.将我们人脸都存放入库中. 其次我们要了解一个概念,我们要将本机中的图片与后台的人脸对比的话我们需要将图片转成base64的字符串的格式 import base…
简单的特征脸识别实验 实现特征脸的过程其实就是主成分分析(Principal Component Analysis,PCA)的一个过程.关于PCA的原理问题,它是一种数学降维的方法.是为了简化问题.在二维的坐标空间内,找到一个单位向量U,使得所有数据在U上的投影之和最大.这样就能把数据分的尽可能的开.然后把训练样本投影到这个向量U上,把测试图片也投影上去,计算这个投影与各个样本人脸投影的欧式距离,得出最小的欧式距离的的那个样本编号,就是最大概率的人脸. Eigenface算法 特征脸方法(Eig…