题意:       给你一个强连通图,然后问你是否可以找到任意满足条件的集合S,S是非空集合,T是S的补集,满足sum(D[i ,j]) <= sum(D[j,i] + B[j,i]) i属于S集合,j属于T集合(其实也就暗示了i,j是S,T的割边). 思路:        无源汇上下流可行流判断问题,首先题目给的图是一个强连通图,为了方便理解,我们假设这个图只有两个点,a,b,那么肯定也只有两条边,a->b ,b->a,那么我们可以直接建边a->b(下界 D 上界 B + D)…
题目大概说一个核反应堆的冷却系统有n个结点,有m条单向的管子连接它们,管子内流量有上下界的要求,问能否使液体在整个系统中循环流动. 本质上就是求一个无源汇流量有上下界的容量网络的可行流,因为无源汇的容量网络上各个顶点都满足流量平衡条件,即所有点的∑流入流量=∑流出流量,可以看成里面的流是循环流动的,类似有向图欧拉回路. 而带上下界的网络可行流的求法,是根据网络流中一个流是可行流的充分必要条件——限制条件和平衡条件,去改造原网络,转化成不带下界的容量网络来求解的.数学模型那些证明之类的不难理解,见…
题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到S的路径的费用和 + 重建这些T到S的双向路径的费用和. 思路1: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center&quo…
题意: 给定一张拓扑图,每条边有边权,每次只能从第一个点出发沿着拓扑图走一条路径,求遍历所有边所需要的最小边权和 分析: 这道题乍一看,可能会想到什么最小链覆盖之类的,但是仔细一想,会发现不行,一是因为每条边都会有贡献,而不是每条链,二是因为边有特定的边权,所以这道题只能用建图复杂一些的网络流来解决. 其实也挺简单的.都不用建超级源点,直接从1号点当源点就行,每条边费用为边权,容量下界为1,上界无穷大. 然后建图跑最小费用可行流就可以了. 代码: #include<bits/stdc++.h>…
题意: 现在有这么一个m人的团伙,也想来一次环游世界. 他们打算兵分多路,游遍每一个国家.    因为他们主要分布在东方,所以他们只朝西方进军.设从东方到西方的每一个国家的编号依次为1...N.假若第i个人的游历路线为P1.P2......Pk(0≤k≤N),则P1<P2<......<Pk.    众所周知,中国相当美丽,这样在环游世界时就有很多人经过中国.我们用一个正整数Vi来描述一个国家的吸引程度,Vi值越大表示该国家越有吸引力,同时也表示有且仅有Vi个人会经过那一个国家.   …
收获: 1. 上下界网络流求最大流步骤: 1) 建出无环无汇的网络,并看是否存在可行流 2) 如果存在,那么以原来的源汇跑一次最大流 3) 流量下界加上当前网络每条边的流量就是最大可行流了. 2. 输出方案: 可以把边的位置信息一起存在边表中,求完最大流后遍历一下边,把信息更新过去. #include <cstdio> #include <cstring> #define min(a,b) ((a)<(b)?(a):(b)) #define oo 0x3f3f3f3f #de…
题目大概给一个有n×m个单元的矩阵,各单元是一个非负整数,已知其每行每列所有单元的和,还有几个约束条件描述一些单元是大于小于还是等于某个数,问矩阵可以是怎样的. 经典的流量有上下界网络流问题. 把行.列看成点,各单元看成边 源点向各行连容量下界0上界该行和的边,各列向汇点连容量下界0上界该列和的边 对于各单元,其对应行列表示的边间连下界上界和约束条件对应的边 这样就是求解这个网络的可行流,可以通过汇点向源点连容量INF的边,使各个顶点都满足平衡条件,这样转化成无源汇有上下界网络流来求解. 最后就…
转载: http://blog.csdn.net/axuan_k/article/details/47297395 题目描述: 现在要针对多赛区竞赛制定一个预算,该预算是一个行代表不同种类支出.列代表不同赛区支出的矩阵.组委会曾经开会讨论过各类支出的总和,以及各赛区所需支出的总和. 另外,组委会还讨论了一些特殊的约束条件:例如,有人提出计算机中心至少需要1000K 里亚尔(伊朗货币),用于购买食物:也有人提出Sharif 赛区用于购买体恤衫的费用不能超过30000K 里亚尔. 组委会的任务是制定…
算法步骤: 1. 先将原图像最大可行流那样变换,唯一不同的是不加dst->src那条边来将它变成无源无汇的网络流图.直接跑一边超级源到超级汇的最大流. 2. 加上刚才没有加上的那条边p 3. 再跑一遍超级源汇之间的最大流,p的流量就是我们要求的最小可行流流量(等于其反向边的"容量") 收获: 1. 最大可行流和最小可行流,当我们把其残量网络求出来后,其流量就是dst->src的残量. 每条边在此时的流量 = 流量下界 + 转换后对应边的流量 #include <cst…
[题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] 无源无汇可行流要求所有的顶点都满足流量平衡. 基本思路是转化成最大流来做. 对于边(u,v,b,c),连边(u,v,c-b).为了保持流量平衡,我们还需要连边         1.(S,u,inB[u]-outB[u])  inB>outB 2.(u,T,outB[u]-inB[u])  outB>…