1.定义 精确一次消费(Exactly-once) 是指消息一定会被处理且只会被处理一次.不多不少就一次处理. 如果达不到精确一次消费,可能会达到另外两种情况: 至少一次消费(at least once),主要是保证数据不会丢失,但有可能存在数据重复问题. 最多一次消费 (at most once),主要是保证数据不会重复,但有可能存在数据丢失问题. 如果同时解决了数据丢失和数据重复的问题,那么就实现了精确一次消费的语义了. 2. 问题如何产生 数据何时会丢失: 比如实时计算任务进行计算,到数据…
戳更多文章: 1-Flink入门 2-本地环境搭建&构建第一个Flink应用 3-DataSet API 4-DataSteam API 5-集群部署 6-分布式缓存 7-重启策略 8-Flink中的窗口 9-Flink中的Time Flink时间戳和水印 Broadcast广播变量 FlinkTable&SQL Flink实战项目实时热销排行 Flink写入RedisSink 17-Flink消费Kafka写入Mysql 本文介绍消费Kafka的消息实时写入Mysql. maven新增依…
使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以保存Direct方式的offset,但是可能会导致频繁写HDFS占用IO),所以每次出现问题的时候,重启程序,而程序的消费方式是Direct,所以在程序down掉的这段时间Kafka上的数据是消费不到的,虽然可以设置offset为smallest,但是会导致重复消费,重新overwrite hive…
场景 餐厅老板想要统计每个用户来他的店里总共消费了多少金额,我们可以使用updateStateByKey来实现 从kafka接收用户消费json数据,统计每分钟用户的消费情况,并且统计所有时间所有用户的消费情况(使用updateStateByKey来实现) 数据格式 {"user":"zhangsan","payment":8} {"user":"wangwu","payment":7}…
前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏欢迎补充来踩,我会第一时…
本机spark 消费kafka失败(无法连接) 终端也不报错 就特么不消费:  但是用console的consumer  却可以 经过各种改版本 ,测试配置,最后发现 只要注释掉 kafka 配置server.properties 中的host.name=kevinhost1(我自己的主机名)  就行了…
spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high2011/article/details/53706446 首先很感谢原文作者,看到这篇文章我少走了很多弯路,转载此文章是为了保留一份供复习用,请大家支持原作者,移步到上面的连接去看,谢谢 一.情景:当Spark streaming程序意外退出时,数据仍然再往Kafka中推送,然而由于Kafka默认…
一.概述 上次写这篇文章文章的时候,Spark还是1.x,kafka还是0.8x版本,转眼间spark到了2.x,kafka也到了2.x,存储offset的方式也发生了改变,笔者根据上篇文章和网上文章,将offset存储到Redis,既保证了并发也保证了数据不丢失,经过测试,有效. 二.使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以保存Dire…
kafka 服务相关的命令 # 开启kafka的服务器bin/kafka-server-start.sh -daemon config/server.properties &# 创建topicbin/kafka-topics.sh --create --zookeeper bigdata-senior02.ibeifeng.com:2181 --replication-factor 1 --partitions 1 --topic orderTopic# 开启kafka的消费者bin/kafka…
对于基于Receiver 形式,我们可以通过配置 spark.streaming.receiver.maxRate 参数来限制每个 receiver 每秒最大可以接收的记录的数据:对于 Direct Approach 的数据接收,我们可以通过配置 spark.streaming.kafka.maxRatePerPartition 参数来限制每次作业中每个 Kafka 分区最多读取的记录条数. 这种限速的弊端很明显,比如假如我们后端处理能力超过了这个最大的限制,会导致资源浪费.需要对每个spark…