PyTorch 数据并行处理】的更多相关文章

PyTorch 数据并行处理 可选择:数据并行处理(文末有完整代码下载) 本文将学习如何用 DataParallel 来使用多 GPU. 通过 PyTorch 使用多个 GPU 非常简单.可以将模型放在一个 GPU: device = torch.device("cuda:0") model.to(device) 然后,可以复制所有的张量到 GPU: mytensor = my_tensor.to(device) 请注意,只是调用 my_tensor.to(device) 返回一个 m…
可选择:数据并行处理(文末有完整代码下载) 作者:Sung Kim 和 Jenny Kang 在这个教程中,我们将学习如何用 DataParallel 来使用多 GPU. 通过 PyTorch 使用多个 GPU 非常简单.你可以将模型放在一个 GPU: device = torch.device("cuda:0") model.to(device) 然后,你可以复制所有的张量到 GPU: mytensor = my_tensor.to(device) 请注意,只是调用 my_tenso…
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorch系列(二) - PyTorch数据读取 PyTorch系列(三) - PyTorch网络构建 PyTorch系列(四) - PyTorch网络设置 参考: PyTorch documentation PyTorch 码源 本文首先介绍了有关预处理包的源码,接着介绍了在数据处理中的具体应用: 其主要…
训练一个模型需要有一个数据库,一个网络,一个优化函数.数据读取是训练的第一步,以下是pytorch数据输入框架. 1)实例化一个数据库 假设我们已经定义了一个FaceLandmarksDataset数据库,此数据库将在以下建立. import FaceLandmarksDataset face_dataset = FaceLandmarksDataset(csv_file='data/faces/face_landmarks.csv', root_dir='data/faces/', trans…
Pytorch数据类型转换 载入模块生成数据 import torch import numpy as np a_numpy = np.array([1,2,3]) Numpy转换为Tensor a_tensor = torch.from_numpy(a_numpy) print(a_tensor) Tensor转换为Numpy a_numpy = a_tensor.numpy() print(a_numpy) Int, float 转换为tensor c = torch.tensor(2) p…
PyTorch数据加载处理 PyTorch提供了许多工具来简化和希望数据加载,使代码更具可读性. 1.下载安装包 scikit-image:用于图像的IO和变换 pandas:用于更容易地进行csv解析 from __future__ import print_function, division import os import torch import pandas as pd              #用于更容易地进行csv解析 from skimage import io, trans…
原文:http://studyai.com/article/11efc2bf#%E9%87%87%E6%A0%B7%E5%99%A8%20Sampler%20&%20BatchSampler 数据库DataBase + 数据集DataSet + 采样器Sampler = 加载器Loader from torch.utils.data import * IMDB + Dataset + Sampler || BatchSampler = DataLoader 数据库 DataBase Image…
出错: Traceback (most recent call last): File , in <module> train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler) File , in train_model for inputs, age_labels, gender_labels in dataloaders[phase]: File , in __next__ return self._process…
数据操作 在深度学习中,我们通常会频繁地对数据进行操作.作为动手学深度学习的基础,本节将介绍如何对内存中的数据进行操作. 在PyTorch中,torch.Tensor是存储和变换数据的主要工具.如果你之前用过NumPy,你会发现Tensor和NumPy的多维数组非常类似.然而,Tensor提供GPU计算和自动求梯度等更多功能,这些使Tensor更加适合深度学习. "tensor"这个单词一般可译作"张量",张量可以看作是一个多维数组.标量可以看作是0维张量,向量可以…
在炼丹时,数据的读取与预处理是关键一步.不同的模型所需要的数据以及预处理方式各不相同,如果每个轮子都我们自己写的话,是很浪费时间和精力的.Pytorch帮我们实现了方便的数据读取与预处理方法,下面记录两个DEMO,便于加快以后的代码效率. 根据数据是否一次性读取完,将DEMO分为: 1.串行式读取.也就是一次性读取完所有需要的数据到内存,模型训练时不会再访问外存.通常用在内存足够的情况下使用,速度更快. 2.并行式读取.也就是边训练边读取数据.通常用在内存不够的情况下使用,会占用计算资源,如果分…
class torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=<function default_collate>, pin_memory=False, drop_last=False) 参数: dataset (Dataset) – 加载数据的数据集. batch_size (int, optional) – 每个batch加载多少…
实例化数据库的时候,有一个可选的参数可以对数据进行转换,满足大多神经网络的要求输入固定尺寸的图片,因此要对原图进行Rescale或者Crop操作,然后返回的数据需要转换成Tensor如: import FaceLandmarksDataset face_dataset = FaceLandmarksDataset(csv_file='data/faces/face_landmarks.csv', root_dir='data/faces/', transform=transforms.Compo…
一.方法一数据组织形式dataset_name----train----val from torchvision import datasets, models, transforms # Data augmentation and normalization for training # Just normalization for validation data_transforms = { 'train': transforms.Compose([ transforms.RandomRes…
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch小试牛刀 迁移学习 混合前端的seq2seq模型部署 保存和加载模型 第四章:PyTorch之图像篇 微调基于torchvision 0.3的目标检测模型 微调TorchVision模…
欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch…
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch小试牛刀 迁移学习 混合前端的seq2seq模型部署 保存和加载模型 第四章:PyTorch之图像篇 微调基于torchvision 0.3的目标检测模型 微调TorchVision模…
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60min入门 PyTorch 入门 PyTorch 自动微分 PyTorch 神经网络 PyTorch 图像分类器 PyTorch 数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch小试牛刀 迁移学习 混合前端的seq2seq模型部署 保存和加载模型 第四章:PyTorch之图像篇 微调基于torchvision 0.3的目标检测模型 微调TorchV…
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60min入门 PyTorch 入门 PyTorch 自动微分 PyTorch 神经网络 PyTorch 图像分类器 PyTorch 数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch小试牛刀 迁移学习 混合前端的seq2seq模型部署 保存和加载模型 第四章:PyTorch之图像篇 微调基于torchvision 0.3的目标检测模型 微调TorchV…
目前研究人员正在使用的深度学习框架不尽相同,有 TensorFlow .PyTorch.Keras等.这些深度学习框架被应用于计算机视觉.语音识别.自然语言处理与生物信息学等领域,并获取了极好的效果.其中,PyTorch是当前难得的简洁优雅且高效快速的框架,当前开源的框架中,没有哪一个框架能够在灵活性.易用性.速度这三个方面有两个能同时超过PyTorch. 基于此,磐小仙邀请到了作者 News(CS硕士) ,在接下来的这段时间里,他将会给大家带来关于PyTorch的一个专栏. 这个专栏主要针对想…
PyTorch Data Parrallel数据并行 可选择:数据并行处理 本文将学习如何用 DataParallel 来使用多 GPU. 通过 PyTorch 使用多个 GPU 非常简单.可以将模型放在一个 GPU: device = torch.device("cuda:0") model.to(device) 可以复制所有的张量到 GPU: mytensor = my_tensor.to(device) 调用 my_tensor.to(device) 返回一个 my_tensor…
[源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 目录 [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 0x00 摘要 0x01 前情回顾 0x02 DataLoader 2.1 初始化 2.2 关键函数 2.3 单进程加载 2.3.1 区分生成 2.3.2 迭代器基类 2.3.3 单进程迭代器 2.3.4 获取样本 2.4 多进程加载 2.4.1 总体逻辑 2.4.2 初始化 2.4.3 业务重置 2.4.4 获取 inde…
PyTorch 60 分钟入门教程:PyTorch 深度学习官方入门中文教程 http://pytorchchina.com/2018/06/25/what-is-pytorch/ PyTorch 60 分钟入门教程:自动微分 http://pytorchchina.com/2018/12/25/autograd-automatic-differentiation/ PyTorch 60 分钟入门教程:神经网络 http://pytorchchina.com/2018/12/25/neural-…
我最近的文章中,专门为想学Pytorch的新手推荐了一些学习资源,包括教程.视频.项目.论文和书籍.希望能对你有帮助:一.PyTorch学习教程.手册 (1)PyTorch英文版官方手册:https://pytorch.org/tutorials/.对于英文比较好的同学,非常推荐该PyTorch官方文档,一步步带你从入门到精通.该文档详细的介绍了从基础知识到如何使用PyTorch构建深层神经网络,以及PyTorch语法和一些高质量的案例. (2)PyTorch中文官方文档:https://pyt…
%matplotlib inline 训练一个分类器 上一讲中已经看到如何去定义一个神经网络,计算损失值和更新网络的权重. 你现在可能在想下一步. 关于数据? 一般情况下处理图像.文本.音频和视频数据时,可以使用标准的Python包来加载数据到一个numpy数组中. 然后把这个数组转换成 torch.*Tensor. 图像可以使用 Pillow, OpenCV 音频可以使用 scipy, librosa 文本可以使用原始Python和Cython来加载,或者使用 NLTK或 SpaCy 处理 特…
目录: PyTorch学习教程.手册 PyTorch视频教程 PyTorch项目资源      - NLP&PyTorch实战      - CV&PyTorch实战 PyTorch论文推荐 Pytorch书籍推荐 一.PyTorch学习教程.手册 (1)PyTorch英文版官方手册:https://pytorch.org/tutorials/.对于英文比较好的同学,非常推荐该PyTorch官方文档,一步步带你从入门到精通.该文档详细的介绍了从基础知识到如何使用PyTorch构建深层神经网…
PyTorch 图像分类 如何定义神经网络,计算损失值和网络里权重的更新. 应该怎么处理数据? 通常来说,处理图像,文本,语音或者视频数据时,可以使用标准 python 包将数据加载成 numpy 数组格式,然后将这个数组转换成 torch.*Tensor 对于图像,可以用 Pillow,OpenCV 对于语音,可以用 scipy,librosa 对于文本,可以直接用 Python 或 Cython 基础数据加载模块,或者用 NLTK 和 SpaCy 特别是对于视觉,已经创建了一个叫做 totc…
[源码解析] PyTorch 如何使用GPU 目录 [源码解析] PyTorch 如何使用GPU 0x00 摘要 0x01 问题 0x02 移动模型到GPU 2.1 cuda 操作 2.2 Module 2.3 移动 2.3.1 示例 2.3.2 操作 2.3.3 _apply 方法 2.4 小结 0x03 在GPU之上调用函数 3.1 CUDA编程模型基础 3.1.1 异构模型 3.1.2 并行思想 3.1.3 处理流程 3.2 函数 3.2.1 核函数 3.2.2 PyTorch 样例 3.…
成都大数据Hadoop与Spark技术培训班   中国信息化培训中心特推出了大数据技术架构及应用实战课程培训班,通过专业的大数据Hadoop与Spark技术架构体系与业界真实案例来全面提升大数据工程师.开发设计人员的工作水平,旨在培养专业的大数据Hadoop与Spark技术架构专家,更好地服务于各个行业的大数据项目开发和落地实施. 2015年近期公开课安排:(全国巡回开班) 08月21日——08月23日大连 09月23日——09月25日北京 10月16日——10月18日成都 11月27日——11…
MapReduce原理与设计思想 简单解释 MapReduce 算法 一个有趣的例子:你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃? MapReduce方法则是: 给在座的所有玩家中分配这摞牌 让每个玩家数自己手中的牌有几张是黑桃,然后把这个数目汇报给你 你把所有玩家告诉你的数字加起来,得到最后的结论 拆分 MapReduce合并了两种经典函数: 映射(Mapping)对集合里的每个目标应用同一个操作.即,如果你想把表单里每个单元格乘以二,那么把这个函数单独地应用在…
大数据关键技术 大数据环境下数据来源非常丰富且数据类型多样,存储和分析挖掘的数据量庞大,对数据展现的要求较高,并且很看重数据处理的高效性和可用性. 传统数据处理方法的不足 传统的数据采集来源单一,且存储.管理和分析数据量也相对较小,大多采用关系型数据库和并行数据仓库即可处理.对依靠并行计算提升数据处理速度方面而言,传统的并行数据库技术追求高度一致性和容错性,根据CAP理论,难以保证其可用性和扩展性. 传统的数据处理方法是以处理器为中心,而大数据环境下,需要采取以数据为中心的模式,减少数据移动带来…