1.jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true&characterEncoding=UTF-8&useSSL=false 2.desc (formatted) 表名: 可以查看表的描述 3.文件以逗号分隔,重命名csv结尾,可以用Excel打开 4.Linux下有一个wc -l 文件名,看文件内容数量 5.外部表,出现空值,同样内容放到外部表,出现空值,而放在分区表,却全部显示 6.一个是外部表删除了之后,集…
不多说,直接上干货! Impala和Hive的关系(详解) 扩展博客 给Clouderamanager集群里安装基于Hive的大数据实时分析查询引擎工具Impala步骤(图文详解) 参考 hortonworks ambari集成impala ambari hdp 集成 impala 欢迎大家,加入我的微信公众号:大数据躺过的坑        人工智能躺过的坑       同时,大家可以关注我的个人博客:    http://www.cnblogs.com/zlslch/   和     http…
先放结论:Hbase和Hive在大数据架构中处在不同位置,Hbase主要解决实时数据查询问题,Hive主要解决数据处理和计算问题,一般是配合使用.一.区别:Hbase: Hadoop database 的简称,也就是基于Hadoop数据库,是一种NoSQL数据库,主要适用于海量明细数据(十亿.百亿)的随机实时查询,如日志明细.交易清单.轨迹行为等.Hive:Hive是Hadoop数据仓库,严格来说,不是数据库,主要是让开发人员能够通过SQL来计算和处理HDFS上的结构化数据,适用于离线的批量数据…
这个很简单,在集群机器里,选择就是了,本来自带就有Impala的. 扩展博客 给Ambari集群里安装基于Hive的大数据实时分析查询引擎工具Impala步骤(图文详解)…
可类化(Classable)是Laxcus大数据管理系统提供的一项基础功能,它能够将类转化为一串字节数组,或者逆向将字节数组转化为一个类.这项功能与JAVA提供的序列化(Serializable)非常相似,但是不同之处在于,可类化是可以由用户自己定义的,包括数据的选择.数据的样式.数据结构等一系列的规则.          这样的好处在于,我们摆脱了JAVA序列化的那种由系统硬性规定的固定格式,可以自由组织我们需要的数据,包括一些可能是私密的数据:不便在于,因为这种自由,程序员需要做些牺牲,编写…
form.html <!DOCTYPE html> <html> <head> <title>文件上传</title> </head> <body> <form action="upload.php" method="post" enctype="multipart/form-data"> <input type="hidden&quo…
1.介绍 本节主要利用Stream SQL进行实时开发实战,回顾Beam的API和Hadoop MapReduce的API,会发现Google将实际业务对数据的各种操作进行了抽象,多变的数据需求抽象为三类: 离线的Map.Shuffle.Reduce以及 实时的ParDo.GroupByKey.Combine,这些抽象其实也对应了SQL的操作.SQL开发有如下几类: select操作:包括过滤.投影.表达式等. join操作:关联操作,包括和维度表关联以及窗口操作等. 聚合操作:全局group…
1.流计算SQL原理和架构 流计算SQL通常是一个类SQL的声明式语言,主要用于对流式数据(Streams)的持续性查询,目的是在常见流计算平台和框架(如Storm.Spark Streaming.Flink.Beam等)的底层API上, 通过使用简易通用的的SQL语言构建SQL抽象层,降低实时开发的门槛. 流计算SQL的原理其实很简单,就是在SQL和底层的流计算引擎之间架起一座桥梁---流计算SQL被用户提交,被SQL引擎层翻译为底层的API并在底层的流计算引擎上执行.比如对Storm 来说,…
1.需求背景 移动互联网时代,海量的用户每天产生海量的数量,这些海量数据远不是一张表能Hold住的.比如 用户表:支付宝8亿,微信10亿.CITIC对公140万,对私8700万. 订单表:美团每天几千万,淘宝历史订单百亿.千亿. 交易流水表 2.选择方案 (1)NoSQL/NewSQL(不选择) 选择RDBMS,不选择NoSQL/NewSQL,主要是因为NoSQL/NewSQL可靠性无法与RDBMS相提并论.RDBMS有以下几个优点: RDBMS生态完善: RDBMS绝对稳定: RDBMS的事务…
保证在实现功能的基础上,尽量减少对数据库的访问次数:通过搜索参数,尽量减少对表的访问行数,最小化结果集,从而减轻网络负担:能够分开的操作尽量分开处理,提高每次的响应速度:在数据窗口使用SQL时,尽量把使用的索引放在选择的首列:算法的结构尽量简单:在查询时,不要过多地使用通配符如SELECT * FROM T1语句,要用到几列就选择几列如:SELECT COL1,COL2 FROM T1:在可能的情况下尽量限制尽量结果集行数如:SELECT TOP 300 COL1,COL2,COL3 FROM…