tensorflow 学习记录】的更多相关文章

机器学习,人工智能往后肯定是一个趋势,现阶段有必要研究一两个人工智能的工具,以免自己技术落伍,其中tensorflow就是一个很不错的项目,有谷歌开发后开源,下面开始学习安装和使用 安装篇: 很不幸,源代码和pip的源都是在谷歌托管,连tensorflow官网都是,所以国内访问不了,很悲剧.但是通过docker可以轻松安装,又不用FQ. docker pull tensorflow/tensorflow 下载tensorflow镜像. docker run -dit -p 8888:8888 -…
windows下的安装: 首先访问https://storage.googleapis.com/tensorflow/ 找到对应操作系统下,对应python版本,对应python位数的whl,下载. 打开cmd,输入pip install (刚才下载的完整路径.whl)           此处坑了我一万个小时-根本原因就是python版本号对上了,但是位数不对.写这篇随笔时,官方只支持64位的python 输入python 输入import tensorflow as tf,不报错,则安装成功…
函数变动 tf.train.SummaryWriter 变为 tf.summary.Filewritter 函数功能相同,仅仅是简单的重命名 ``` writer = tf.summary.FileWriter('./my_graph',sess.graph) ```…
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S1就是S2的一个超集,反过来,S2是S1的子集. 张量形状: 固定长度: [],() 0阶次:[3],(2,3) 1/2阶次 不定长度:[None] 表示任意长度的向量,(None,3) 表示行数任意,3列的矩阵 获取Op:tf.shape(tensor, name="tensor_shape&qu…
作者:黄璞链接:https://www.zhihu.com/question/41667903/answer/109611087来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 前言:其实TensorFlow本身仅仅是一个分布式的高性能计算框架,想要用TF做深度学习,仅仅学习这个框架本身是没有太大意义的.因此应该将TF看作技术路线中的一个核心点,去掌握整个开发所需要的必要技术,知识.尤其是深度学习的基本原理,这对日后搭建模型,模型调参以至提出新的模型都是极其有用的.…
如何高效的学习 TensorFlow 代码? 或者如何掌握TensorFlow,应用到任何领域? 作者:黄璞链接:https://www.zhihu.com/question/41667903/answer/109611087来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 有同学反应资源太多不知道从何看起,或者有点基础了想快速上手,因此就直接把几个比较好的教程放在这里,后面的内容作为参考. Stanford的CS 20SI课程,专门针对TensorFlow的课程,…
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 softmax   这里用到的tf基本知识 tf.tensor-张量,其实就是矩阵.官方说法是原料 tf.Varible-变量,用来记录数据,参数.其实也是个矩阵.不过要初始化后才有具体的值 tf.Session()-会话,就是个模型,我们可以在里面添加数据流动方向,运算节点 香农熵 香农熵是计算信息…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu  tf.nn.…
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练.而这篇文章是想自己完成LeNet网络来训练自己的数据集.LeNet主要用来进行手写字符的识别与分类,下面记录一下自己学习的过程. 我的学习步骤分为以下四步: 1,温习LeNet-5的网络层 2,使用LeNet-5训练MNIST数据集 3,使用LeNet-5训练TFRecord格式的MNIST数据集…
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…