BZOJ4559 成绩比较】的更多相关文章

题目传送门 分析: 我们可以先试着求一下,对于单个学科,有多少种分配方案可以使B神排名为R 对于第i个学科 \(~~~~g(i)=\sum_{j=1}^{H_i}j^{n-R_i}(H_i-j)^{R_i-1}\) 相当于枚举B神本人的分数,然后分别将其他人分配 这个\(H_i\)很大,但是这个函数是一个大约在n次的多项式,拉格朗日插值一下就好了 不会?去百度一下,就是套一个公式2333 然后我们考虑DP 设f[i][j]表示前i个技能后目前碾压了j个人 那么 \(~~~~f[i][j]=\su…
[BZOJ4559]成绩比较(动态规划,拉格朗日插值) 题面 BZOJ 洛谷 题解 显然可以每门课顺次考虑, 设\(f[i][j]\)表示前\(i\)门课程\(zsy\)恰好碾压了\(j\)个\(yyb\)的方案数. 那么,思考转移,显然是原来碾压了\(k\)个人,但是在考虑到这一门课程的时候有些人没被碾压了, 所以转移就是\(f[i][j]=f[i-1][k]*C_k^j*C_{n-k-1}^{n-rank[i]-j}*P[i]\) 大致的含义就是,原先\(zsy\)碾压了\(k\)个人,但是…
[BZOJ4559][JLoi2016]成绩比较 Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一位同学在必修课上可以获得的分数是1到Ui中的一个整数.如果在每门课上A获得的成绩均小于等于B获得的成绩,则称A被B碾压.在B神的说法中,G系共有K位同学被他碾压(不包括他自己),而其他N-K-1位同学则没有被他碾压.D神查到了B神每门必修课的排名.这里的排名是指:如果B神某门课的排名为R,则表示有且…
Portal -->bzoj4559 补档计划 ​  借这题补个档--拉格朗日插值 ​​  插值的话大概就是有一个\(n-1\)次多项式\(A(x)\),你只知道它在\(n\)处的点值,分别是\((x_1,y_1),(x_2,y_2),...,(x_{n},y_{n})\),让你还原这个多项式 ​  关于插值我们有很多的方法,有十分粗暴的高消\(O(n^3)\),也有十分优秀的快速差值(不会qwq),还有拉格朗日插值法\(O(n^2)\)(emmm如果说取值位置连续的话..可以做到\(O(n)\…
题意: G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M- 1的整数.一位同学在必修课上可以获得的分数是1到Ui中的一个整数.如果在每门课上A获得的成绩均小于等于B获 得的成绩,则称A被B碾压.在B神的说法中,G系共有K位同学被他碾压(不包括他自己),而其他N-K-1位同学则没 有被他碾压.D神查到了B神每门必修课的排名.这里的排名是指:如果B神某门课的排名为R,则表示有且仅有R-1 位同学这门课的分数大于B神的分数,有且仅有N-R…
4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status][Discuss] Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M- 1的整数.一位同学在必修课上可以获得的分数是1到Ui中的一个整数.如果在每门课上A获得的成绩均小于等于B获 得的成绩,则称A被B碾压.在B…
题意 题目链接 Sol 想不到想不到.. 首先在不考虑每个人的真是成绩的情况下,设\(f[i][j]\)表示考虑了前\(i\)个人,有\(j\)个人被碾压的方案数 转移方程:\[f[i][j] = \sum_{k = j}^n f[i -1][k] C_{k}^{k - j} C_{N - k}^{r[i] - 1 - (k - j)} * g(i)\] 大概解释一下,枚举的\(k\)表示之前碾压了多少,首先我们凑出\(j\)个人继续碾压,也就是说会有\(k - j\)个人该课的分数比\(B\)…
容斥一发改为计算至少碾压k人的情况数量,这样对于每门课就可以分开考虑再相乘了.剩下的问题是给出某人的排名和分数的值域,求方案数.枚举出现了几种不同的分数,再枚举被给出的人的分数排第几,算一个类似斯特林数的东西即可.后一部分与碾压几人是无关的,预处理一下,复杂度即为三方.当然和四方跑得也差不多快. 数据有些过水,容斥系数都错了还能有90. #include<iostream> #include<cstdio> #include<cmath> #include<cst…
http://www.lydsy.com/JudgeOnline/problem.php?id=4559 f[i][j] 表示前i门课,有j个人没有被碾压的方案数 g[i] 表示第i门课,满足B神排名的分数安排方案数 g[i]的求法: 枚举B神这门课x分,则有n-Ri个人的分数<=x ,Ri-1个人的分数>x Ui 上限是1e9,但是g[i] 是一个关于Ui 的n次多项式,所以可以用拉格朗日插值法来求 递推 f[i][j]: 假设f[i-1][w] 转移到了f[i][j],j>=w 前i…
bzoj 题意: 有\(n\)位同学,\(m\)门课. 一位同学在第\(i\)门课上面获得的分数上限为\(u_i\). 定义同学\(A\)碾压同学\(B\)为每一课\(A\)同学的成绩都不低于\(B\)同学. 现在知道一个同学碾压了\(k\)个人,同时已知其各个科目的排名\(r_i\),问有多少种情况满足这个说法. 思路: 考虑按照每一科一个一个来考虑,\(dp[i][j]\)表示前\(i\)门课碾压\(j\)个人的情况数. 那么有转移\(dp[i][j]=\sum dp[i-1][k]\cdo…