TensorFlow提供了一个用于保存模型的工具以及一个可视化方案 这里使用的TensorFlow为1.3.0版本 一.保存模型数据 模型数据以文件的形式保存到本地: 使用神经网络模型进行大数据量和复杂模型训练时,训练时间可能会持续增加,此时为避免训练过程出现不可逆的影响,并验证训练效果,可以考虑分段进行,将训练数据模型保存,然后在继续训练时重新读取: 此外,模型训练完毕,获取一个性能良好的模型后,可以保存以备重复利用: 模型保存形式如下: 保存模型数据的基本方法: save_dir = 'mo…
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔记:常用函数说明 (五) tensorflow笔记:模型的保存与训练过程可视化 (六)tensorflow笔记:使用tf来实现word2vec 保存与读取模型 在使用tf来训练模型的时候,难免会出现中断的情况.这时候自然就希望能够将辛辛苦苦得到的中间参数保留下来,不然…
一.模型的保存:tf.train.Saver类中的save TensorFlow提供了一个一个API来保存和还原一个模型,即tf.train.Saver类.以下代码为保存TensorFlow计算图的方法: 二.模型的读取:tf.train.Saver类中的restore 注意:需要重新定义的变量大小和保存的模型变量大小需相同 通过以上方式保存和加载了TensorFlow计算图上定义的全部变量.但有时候只需要保存和加载部分变量, 比如:之前训练好了一个五层的神经网络模型,现想尝试一个六层的神经网络…
一:保存 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次100张照片 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size…
参考学习博客: # https://www.cnblogs.com/felixwang2/p/9190692.html 一.模型保存 # https://www.cnblogs.com/felixwang2/p/9190692.html # TensorFlow(十三):模型的保存与载入 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据集 mnist = input_…
在我们使用TensorFlow的时候,有时候需要训练一个比较复杂的网络,比如后面的AlexNet,ResNet,GoogleNet等等,由于训练这些网络花费的时间比较长,因此我们需要保存模型的参数. 编程基础案例中主要讲解模型的保存和恢复,以及使用几个案例使我们更好的理解这一块内容. 一 保存和载入模型 1.保存模型 首先需要建立一个saver,然后在session中通过saver的save即可将模型保存起来,代码如下: ''' 1.保存模型 ''' ''' 这里是各种构建模型graph的操作,…
1.tensorflow中模型的保存 创建tf.train.saver,使用saver进行保存: saver = tf.train.Saver() saver.save(sess, './trained_variables.ckpt', global_step=1000) 1.1.在保存时需要注意参数在创建时需要传入name参数,读取参数时凭借name属性读取. def weight_variable(shape, name): initial = tf.truncated_normal(sha…
Tensorflow:模型变量保存 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tensorflow1.4.0 python3.5.0 Tensorflow常用保存模型方法 import tensorflow as tf saver = tf.train.Saver() # 创建保存器 with tf.Session() as sess: saver.save(sess,"/path/model.ckpt"…
一.TensorFlow的模型保存和加载,使我们在训练和使用时的一种常用方式.我们把训练好的模型通过二次加载训练,或者独立加载模型训练.这基本上都是比较常用的方式. 二.模型的保存与加载类型有2种 1)需要重新建立图谱,来实现模型的加载 2)独家加载模型 模型的保存与训练加载: tf.train.Saver(<var_list>,<max_to_keep>) var_list: 指定要保存和还原的变量,作为一个dict或者list传递 max_to_keep: 指示要保留的最大检查…
1.模型的保存: import tensorflow as tf v1 = tf.Variable(1.0,dtype=tf.float32) v2 = tf.Variable(2.0,dtype=tf.float32) x = v1 + v2 saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) result = sess.run(x) #将模型保存在mod…