文章目录 准备 最终结果 未来改进 准备 机器: Titan XP 12GB, 64GB RAM, 机器非常强,可靠. 下次有机会购买RTX 2080 Ti 试试 最终结果 错误率可以达到万分之一,非常可考 未来改进 精简模型 多模型融合,提升准确度…
结果解读 结果1 结果2 结果1 void computeBCValue(cv::Mat mat_img, std::vector<bbox_t> result_vec, std::vector<std::string> obj_names, int current_det_fps = -1, int current_cap_fps = -1) { int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },…
暑假听了computer vision的一个Summer School,里面Jason J. Corso讲了他们运用Low-Mid-High层次结构进行Video Understanding 和 Activity Recognition的方法,受益颇深,在这里把他的方法总结一下: ------------------------------------------------------------------------------------------------- 1. 层次结构表示:…
CVPR2019 1.An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition 作者:Chenyang Si, Wentao Chen, Wei Wang, Liang Wang, Tieniu Tan 论文链接:https://arxiv.org/abs/1902.09130 2.Improving the Performance of Unimodal Dynami…
猪圈子,一个有个性的订阅号 01 测量人脸识别的主要性能指标有 1.误识率(False;Accept;Rate;FAR):这是将其他人误作指定人员的概率; 2.拒识率(False;RejectRate;FRR):这是将指定人员误作其它人员的概率. 计算机在判别时采用的阈值不同,这两个指标也不同.一般情况下,误识率FAR;随阈值的增大(放宽条件)而增大,拒识率FRR;随阈值的增大而减小.因此,可以采用错误率(Equal;Error;Rate;ERR)作为性能指标,这是调节阈值,使这FAR和FRR两…
深度学习在最近十来年特别火,几乎是带动AI浪潮的最大贡献者.互联网视频在最近几年也特别火,短视频.视频直播等各种新型UGC模式牢牢抓住了用户的消费心里,成为互联网吸金的又一利器.当这两个火碰在一起,会产生什么样的化学反应呢? 不说具体的技术,先上一张福利图,该图展示了机器对一个视频的认知效果.其总红色的字表示objects, 蓝色的字表示scenes,绿色的字表示activities. 图1 人工智能在视频上的应用主要一个课题是视频理解,努力解决“语义鸿沟”的问题,其中包括了:     · 视频…
​​关注嘉为科技,获取运维新知 一.为什么不用“人天”? 传统的IT项目,尤其是软件开发项目,往往使用“人天”来作为工作量评估的量词.甚至是代表一种评估方式.在软件项目开发经典著作<人月神话>中,明确的指出了按“人月”或“人天”来评估需求工作量的巨大弊端,主因之一就是在于这个词让人产生了“可以使用更多的开发人员就可以更快速的完成软件开发”这一错觉.在Agile敏捷项目当中,大都避免在快速需求评估阶段使用“人天”.具体请参看<人月神话>. <人月神话>中最著名的插图“焦油…
4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.1什么是人脸识别 Face verification人脸验证 VS face recognition人脸识别 Face verification人脸验证 人脸验证 输入是一张图片,以及人的姓名或者ID作为标签 输出是这张输入的图片是否是这个确定的人 这时候也被称为1对1问题 人脸识别 人脸识别问题比人脸验证问题困难的多,其输入为一个具有K个人的数据集,将一张图片作为输入,如果这张图片是这K个人…
源地址 arXiv:1712.07465: Recurrent Attentional Reinforcement Learning for Multi-label Image Recognition 简介 识别图像中的多个标签是计算机视觉中的一项基本但具有挑战性的任务.针对现有方法计算成本高.不能有效利用空间上下文的问题,论文提出了循环迭代的结合注意力机制的强化学习框架,并进行了对应的熔断测试. 框架结构 输入部分 将图片放缩至W*H的大小,送入FCN(VGG16 ConvNet)产生特征图\…
一. 应用背景 OCR(Optical Character Recognition)文字识别技术的应用领域主要包括:证件识别.车牌识别.智慧医疗.pdf文档转换为Word.拍照识别.截图识别.网络图片识别.无人驾驶.无纸化办公.稿件编辑校对.物流分拣.舆情监控.文档检索.字幕识别文献资料检索等.OCR文字识别主要可以分为:印刷体文字识别和手写体文字识别.文字识别方法的一般流程为:识别出文字区域.对文字区域矩形分割成不同的字符.字符分类.识别出文字.后处理识别矫正. 二. 文字检测 文字检测是文字…