最近在在学习强化学习方面的东西, 对于现有的很多文章中关于强化学习的知识很是不理解,很多都是一个公式套一个公式,也没有什么太多的解释,感觉像是在看天书一般,经过了较长时间的挣扎最后决定从一些基础的东西开始入手,于是便有了这篇论文的发现. Learning  from  Delayed  Reward    该论文的页面为:   http://www.cs.rhul.ac.uk/~chrisw/thesis.html 下载地址为:            http://www.cs.rhul.ac.…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract 在中脑多巴胺能神经元的研究中取得了许多最新进展.要了解这些进步以及它们之间的相互关系,需要对作为解释框架并指导正在进行的实验探究的计算模型有深刻的理解.现在,理论和实验的这种相互交织非常清楚地表明,中脑多巴胺神经元的阶段性活动为突触改变提供了一个整体机制.这些突触改变反过来又为特定类别的强化学习机制提供了机械基础,而强化学习机制现在似乎已成为人类和动物行为的基础.这篇综述既描述了该结论的关键经验性发现,也描述了得出此…
作者用action, reward, state等当做lalbel,进行有监督训练.…
Using the latest advancements in AI to predict stock market movements 2019-01-13 21:31:18 This blog is copied from: https://github.com/borisbanushev/stockpredictionai In this notebook I will create a complete process for predicting stock price moveme…
NAS with RL 2017-ICLR-Neural Architecture Search with Reinforcement Learning Google Brain Quoc V . Le etc GitHub: stars Citation:1499 Abstract we use a recurrent network to generate the model descriptions of neural networks and train this RNN with re…
 原文地址: https://arxiv.org/pdf/1811.07871.pdf ======================================================== 如何让AI依照人类的意图行事?这是将AI应用于现实世界复杂问题的最大障碍之一. DeepMind将这个问题定义为“智能体对齐问题”,并提出了新的解决方案. 概述了解决agent alignment问题的研究方向.所提出的方法依赖于奖励建模的递归应用,以符合用户意图的方式解决复杂的现实世界问题. 强…
Sparse Reward 推荐资料 <深度强化学习中稀疏奖励问题研究综述>1 李宏毅深度强化学习Sparse Reward4 ​ 强化学习算法在被引入深度神经网络后,对大量样本的需求更加明显.如果智能体在与环境的交互过程中没有获得奖励,那么该样本在基于值函数和基于策略梯度的损失中的贡献会很小. ​ 针对解决稀疏奖励问题的研究主要包括:1 Reward Shaping:奖励设计与学习 经验回放机制 探索与利用 多目标学习和辅助任务 1. Reward Shaping 人为设计的 "密…
转自:http://blog.evjang.com/2017/01/nips2016.html           Eric Jang Technology, A.I., Careers               Monday, January 2, 2017 Summary of NIPS 2016   The 30th annual Neural Information Processing Systems (NIPS) conference took place in Barcelona…
Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from Pixels May 31, 2016 This is a long overdue blog post on Reinforcement Learning (RL). RL is hot! You may have noticed that computers can now automatica…
Long Papers [Domain adaptation ] 1. Adversarial Adaptation of Synthetic or Stale Data ( Cited by 14 ) Young-Bum Kim, Karl Stratos and Dongchan Kim Two types of data shift common in practice are 1. transferring from synthetic data to live user data (a…