[Bayes] What is Sampling】的更多相关文章

runifum Inversion Sampling 看样子就是个路人甲. Ref: [Bayes] Hist & line: Reject Sampling and Importance Sampling > func=function(n) { + *runif(n))) + } // 反函数的x的均匀sampling值 => y 就是原函数的x,刚好作为hist的输入参数 > hist(),probability=T, xlab=expression(theta), yla…
Ref: http://blog.csdn.net/xianlingmao/article/details/7768833 通常,我们会遇到很多问题无法用分析的方法来求得精确解,例如由于式子特别,真的解不出来: 一般遇到这种情况,人们经常会采用一些方法去得到近似解,已经近似程度. 本文要谈的随机模拟就是这么一类近似求解的方法. 它的诞生虽然最早可以追溯到18xx年法国数学家蒲松的投针问题(用模拟的方法来求解\pi的问题),但是真正的大规模应用还是被用来解决二战时候美国生产原子弹所碰到的各种难以解…
dchisq gives the density,                          # 计算出分布下某值处的密度值 pchisq gives the distribution function, qchisq gives the quantile function, rchisq generates random deviates. 通过一个例子直接了解: 原分布:从Rayleigh distribution中抽样.这是什么分布? (一个不熟悉的分布) 当一个随机二维向量的两个…
不错的文章:LDA-math-MCMC 和 Gibbs Sampling 可作为精进MCMC抽样方法的学习材料. 简单概率分布的模拟 Box-Muller变换原理详解 本质上来说,计算机只能生产符合均匀分布的采样.如果要生成其他分布的采样,就需要借助一些技巧性的方法,例如我们在前面的文章提到过的逆变换采样.拒绝采样以及自适应的拒绝采样等等. 涉及到 "逆变换" [Bayes] runif: Inversion Sampling 例如:U1, U2是均匀分布,可得到两个高斯分布的变量X,…
数学似宇宙,韭菜只关心其中实用的部分. scikit-learn (sklearn) 官方文档中文版 scikit-learn Machine Learning in Python 一个新颖的online图书资源集,非常棒. 机器学习原理 Bayesian Machine Learning 9. [Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process[ignore] 随机过程 [Scikit-learn] 1.1 Generalized Linear Mo…
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习目标:Dirichlet Process, HDP, HDP-HMM, IBP, CRM Alex Kendall Geometry and Uncertainty in Deep Learning for Computer Vision 语义分割 colah's blog Feature Visu…
这一部分是个坑,应该对绝大多数菜鸡晕头转向的部分,因为有来自物理学界的问候. Deep learning:十九(RBM简单理解) Deep learning:十八(关于随机采样)    采样方法 [Bayes] runif: Inversion Sampling [Bayes] dchisq: Metropolis-Hastings Algorithm [Bayes] Metroplis Algorithm --> Gibbs Sampling 能量传播 纵观大部分介绍RBM的paper,都会提…
吻合度蛮高,但不光滑. > L= > K=/ > x=runif(L) > *x*(-x)^/K)) > hist(x[ind],probability=T, + xlab="x",ylab="Density",main="") /* 应用了平滑数据的核函数 */ > d=density(x[,to=) // 只对标记为true的x做统计 --> 核密度估计 > lines(d,col=) // (…
M-H是Metropolis抽样方法的扩展,扩展后可以支持不对称的提议分布. 对于M-H而言,根据候选分布g的不同选择,衍生出了集中不同的变种: (1)Metropolis抽样方法 (2)随机游动Metropolis (3)独立抽样方法 <---- 本章涉及的方法 (4)逐分量的M-H抽样方法 独立抽样方法是M-H的一个特殊形式.因为独立,所以提议分布去掉了先验的影响. [Bayes] Metropolis-Hastings Algorithm 中可见的例如下图,是否可以用于预测参? 在此用于预…
虽然openBugs效果不错,但原理是什么呢?需要感性认识,才能得其精髓. Recall [Bayes] prod: M-H: Independence Sampler firstly. 采样法 Recall [ML] How to implement a neural network then.     梯度下降法 And compare them. 梯度下降,其实就是减小loss function,不断逼近拟合的过程. 那采样法呢? y = a*x +sigma,  where sigma~…