51Nod 1079:中国剩余定理】的更多相关文章

一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K.例如,K % 2 = 1, K % 3 = 2, K % 5 = 3.符合条件的最小的K = 23.   Input 第1行:1个数N表示后面输入的质数及模的数量.(2 <= N <= 10) 第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果.(2 <= P <= 100, 0 <= K < P) Output 输出符合条件的最小的K.数据中所有K均小于10^9.…
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1079 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K.例如,K % 2 = 1, K % 3 = 2, K % 5 = 3.符合条件的最小的K = 23.   Input 第1行:1个数N表示后面输入的质数及模的数量.(2 <= N <= 10) 第2 -…
1079 中国剩余定理 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K.例如,K % 2 = 1, K % 3 = 2, K % 5 = 3.符合条件的最小的K = 23.   Input 第1行:1个数N表示后面输入的质数及模的数量.(2 <= N <= 10) 第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果.(2 <= P <…
1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数.  如果 m|(a-b),  则称 a 和 b 模 m 同余, 记为 m 称为这个同余式的模. 定理(中国剩余定理): 设 m1,m2,...,mr 是两两互素的正整数. 设 a1,a2,...,ar 是整数, 则同余方程组 模 M = m1m2...mr 有唯一解 3.C语言源代码 #include<stdio.…
#include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(scanf("%d%d%d%d",&p,&e,&i,&d)) { && e == - && i == - && d== -) break; ,m2 = ,m3 = ; const int M1 = m2*m3, M2…
题目:http://community.topcoder.com/stat?c=problem_statement&pm=12083 这道题还是挺耐想的(至少对我来说是这样).开始时我只会60%的算法,在借鉴了巨神zhx的代码并查阅了官方题解后才终于懂了点了. 两两互质的情形 首先,考虑简化的情形:若模板i的长度为li,我们加上限制,即所有模板的长度两两互质. 假设当前位置x对应第i个模板的位置为ai,当且仅当,而li是两两互质的,由中国剩余定理,x在范围内有唯一解.这样,这个问题就被秒掉了.…
Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 103506   Accepted: 31995 Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical,…
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个同余方程合并,具体会在下面提到. 但是,使用仍有限制,那就是\(x\)的系数必须为\(1\). 没关系,把它再扩展一下 题目及实现 洛谷题目传送门 题意分析 显然,如果我们能干掉所有龙,那么每一次使用的剑的攻击力是已知的,设为\(k\).那么对于每一条龙,攻击次数\(x\)必须满足\(kx\equi…
洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d|N}C(N,d)}(\mod999911659)\) 乍一看,指数这么大,要怎么处理好呢?上费马小定理. 平时用费马小定理求逆元用多了,\(a^{p-2}\equiv inv(a)(\mod p)\),搞得蒟蒻差点忘了它原本的样子\(a^{p-1}=1(\mod p)\),那原式的指数\(\sum…
洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[1,k],i\neq j,b_i\)与\(b_j\)互质) \(\begin{cases}n\equiv a_1(\mod b_1)\\n\equiv a_2(\mod b_2)\\......\\n\equiv a_k(\mod b_k)\end{cases}\) 设\(lcm=\prod_{i=…