别人的解题报告: http://blog.csdn.net/zstu_zlj/article/details/9796087 我的代码: #include <cstdio> #define N 100020 ; int p[N]; void Partition() { p[] =; ; n <= 1e5; ++n) { ; ; while(true) { *k-)/; ) break; p[n] = (p[n]+fac*p[t])%mod; ) p[n] = (p[n]+fac*p[t-…
http://acm.hdu.edu.cn/showproblem.php?pid=3641 学到: 1.二分求符合条件的最小值 /*==================================================== 二分查找符合条件的最小值 ======================================================*/ ll solve() { __int64 low = 0, high = INF, mid ; while(low <=…
下面内容摘自维基百科: 五边形数定理[编辑] 五边形数定理是一个由欧拉发现的数学定理,描写叙述欧拉函数展开式的特性[1] [2].欧拉函数的展开式例如以下: 亦即 欧拉函数展开后,有些次方项被消去,仅仅留下次方项为1, 2, 5, 7, 12, ...的项次,留下来的次方恰为广义五边形数. 当中符号为- - + + - - + + ..... 若将上式视为幂级数,其收敛半径为1,只是若仅仅是当作形式幂级数(formal power series)来考虑,就不会考虑其收敛半径. 和切割函数的关系…
HDU 4651 Partition Problem : n的整数划分方案数.(n <= 100008) Solution : 参考资料: 五角数 欧拉函数 五边形数定理 整数划分 一份详细的题解 欧拉函数的定义如下: \[\phi(q) =\prod\limits_{n=1}^{\infty}(1-q^n) \] 五边形定理对欧拉函数展开如下: \[\phi(q) = \sum_{n = 0}^{n = \infty}(-1)^nq^{\frac{3n^2\pm n}{2}}\] 其中 \(\…
GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD. \[ x=(p_1^{i_1})*(p_2^{i_2})*(p_3^{i_3})\dots \] \[ y=(p_1^{j_1})*(p_2^{j_2})*(p_3^{j_3})\dots \] \[ z=(p_1^{k_1})*(p_2^{k_2})*(p_3^{k_3})\dots \] \…
E. Ehab's REAL Number Theory Problem 数论+图论 求最小环 题目大意: 给你一个n大小的数列,数列里的每一个元素满足以下要求: 数据范围是:\(1<=a_i<=10^6\) \(a_i\) 最多只有7个因数 题目要求在这个数列找到一个最短的子数列,子数列的所有的数相乘是一个完全平方数. 题解: 这个题对于 \(x^{3}\) 应该等价于 \(x\) ,其实就是可以除去 \(a_i\)中的所有的平方项,显而易见,这个并不影响答案. 因为 \(a_i\) 最多只…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4651 题意:给出n.求其整数拆分的方案数. i64 f[N]; void init(){    f[0]=f[1]=1; f[2]=2;    int i,j,k,t;    for(i=3;i<N;i++) for(j=1;;j++)    {        FOR0(k,2)        {            if(!k) t=(3*j*j-j)/2;            else t=…
题意:把一个整数N(1 <= N <= 100000)拆分不超过N的正整数相加,有多少种拆法. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4651 ——>>好经典的问题,但数好大,比赛卡住了... 原来,这个问题有个公式计算: q[i]为第i个广义五边形数. #include <cstdio> using namespace std; const int maxn = 100000; const int mod = 1…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4651 参考:https://blog.csdn.net/u013007900/article/details/42365823 https://blog.csdn.net/visit_world/article/details/52734860 好像这样复杂度就是 \( O(n\sqrt{n} \) 的了. #include<cstdio> #include<cstring> #inclu…
Partition Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 842    Accepted Submission(s): 478 Problem Description How many ways can the numbers 1 to 15 be added together to make 15? The technical…