原文:https://github.com/aymericdamien/TopDeepLearning 项目名称 Stars 项目介绍 TensorFlow 29622 使用数据流图计算可扩展机器学习问题. Caffe 11799 Caffe是一个高效的开源深度学习框架. Neural Style 10148 Torch实现的神经网络算法. Deep Dream 9042 Deep Dream,一款图像识别工具. Keras 7502 一款Python实现的深度学习库,包括卷积神经网络.递归神经…
来源于:https://zhuanlan.zhihu.com/p/24627923 2016年接近尾声,在最近的几篇文章中,会整理总结一些2016年度开源项目.今天整理的是:2016年度GitHub最受欢迎的开源项目总榜. 作者:路人甲链接:https://zhuanlan.zhihu.com/p/24627923来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 在过去的2016年里面,GitHub最受欢迎.Stars最多的项目分别是哪些呢?赶紧来,看看文章跟着这些…
转载:https://www.oschina.net/news/79500/57-most-popular-deep-learning-project-at-github GitHub 上 57 款最流行的开源深度学习项目 本文整理了 GitHub 上最流行的 57 款深度学习项目(按 stars 排名).最后更新:2016.08.09 1.TensorFlow 使用数据流图计算可扩展机器学习问题 TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFl…
GitHub 上 57 款最流行的开源深度学习项目[转] 2017-02-19 20:09 334人阅读 评论(0) 收藏 举报 分类: deeplearning(28) from: https://www.oschina.net/news/79500/57-most-popular-deep-learning-project-at-github 本文整理了 GitHub 上最流行的 57 款深度学习项目(按 stars 排名).最后更新:2016.08.09 1.TensorFlow Star…
紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把NVIDIA显卡驱动安装好了 一.安装CUDA CUDA(Compute Unified Device Architecture),是英伟达公司推出的一种基于新的并行编程模型和指令集架构的通用计算架构,它能利用英伟达GPU的并行计算引擎,比CPU更高效的解决许多复杂计算任务,想使用GPU就必须要使用CUDA.…
github上热门深度学习项目 项目名 Stars 描述 TensorFlow 29622 使用数据流图进行可扩展机器学习的计算. Caffe 11799 Caffe:深度学习的快速开放框架. [Neural Style](https://github.com/jcjohnson/neural-style) 10148 火炬实现神经风格算法. Deep Dream 9042 深梦. Keras 7502 适用于Python的深度学习库.Convnets,递归神经网络等等.在Theano和Tens…
GitHub上最火的74个Android开源项目 1.ActionBarSherlock ActionBarSherlock应该算得上是GitHub上最火的Android开源项目了,它是一个独立的库,通过一个API和主题,开发者就可以很方便地使用所有版本的Android动作栏的设计模式. 对于Android 4.0及更高版本,ActionBarSherlock可以自动使用本地ActionBar实现,而对于之前没有ActionBar功能的版本,基于Ice Cream Sandwich的自定义动作栏…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
此前,推出的GitHub平台上“最受欢迎的开源项目”系列文章引发了许多读者的热议,在“GitHub上最火的40个Android开源项目(一).(二)中,我们也相继盘点了40个GitHub上最受欢迎的Android开源项目.对于GitHub上如此众多的项目,有人不断Mark,有人分享自己的经验,有人心生“看得眼花缭乱,果然是需要终身学习的时代”的感慨,不管怎么样,如果能让你真的有所学习有所收获,我们的目的也就达到了. 今天我们将继续介绍GitHub上另外34个非常受欢迎的Android开源项目,在…
Github上PHP资源汇总大全,php学习的好资料 国外程序员ziadoz 在Github上收集整理了PHP的各种资源,内容包括模板.框架.数据库.安全等方面的库和工具.汇总了各种PHP资源,供各位PHP学习者和程序员参考.英文原文:https://github.com/ziadoz/awesome-php 依赖管理 ——用于依赖管理的包和框架Composer/Packagist : 一个包和依赖管理器Composer Installers:  一个多框架Composer库安装器Pickle:…
1. AFNetworking 在众多iOS开源项目中,AFNetworking可以称得上是最受开发者欢迎的库项目.AFNetworking是一个轻量级的iOS. Mac OS X网络通信类库,现在是GitHub上第三大Objective-C库.它建立在NSURLConnection.NSOperation等类库的基础 上,让很多网络通信功能的实现变得十分简单,因此,许多iOS应用开发都会使用到它. 支持HTTP请求和基于REST的网络服务(包括GET.POST.PUT.DELETE等): 支持…
usefullProjectCollect github上一些觉得对自己工作有用的项目收集 技能类 markdown语法中文说明 全文检索 elasticsearch bigdesk elasticsearch管理插件 nosql mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用 Chronicle-Queue Micro second messaging that stores everything to diskhttp://openhft.net/products…
"每一次的改变总意味着新的开始."这句话用在iOS上可谓是再合适不过的了.GitHub上的iOS开源项目数不胜数,iOS每一次的改变,总会引发iOS开源项目的演变,从iOS 1.x到如今的iOS 7,有的项目已经被弃用,即使曾经的它很受开发者喜爱,有的项目则继续发扬光大,新项目更是层出不穷.在本文中,我们将继续为大家介绍20个在GitHub上非常受开发者欢迎的iOS开源项目,在这些项目中,有哪些是你经常使用的?又有哪些是你曾经使用过的? SSToolkit SSToolkit可以说是i…
GitHub上最著名的Android播放器开源项目大全                                                                                                                                                                                                       本文链接:https://blog.csdn.n…
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_189 笔者投入M1的怀抱已经有一段时间了,俗话说得好,但闻新人笑,不见旧人哭,Intel mac早已被束之高阁,而M1 mac已经不能用真香来形容了,简直就是"香透满堂金玉彩,扇遮半面桃花开!",轻抚M1 mac那滑若柔荑的秒控键盘,别说996了,就是007,我们也能安之若素,也可以笑慰平生.好了,日常吹M1的环节结束,正所谓剑虽利,不厉不断,材虽美,不学不高.本次我们尝试在M1 Mac os 中搭建Python3的…
深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可以构建神经网络层函数,比如我们称之为add_layer()函数,由于神经网络层的工作原理是一层的神经元处理完成后得到一个结果,然后传递给下一个神经元,这就类似于函数的return与参数变量,所以最终代码的模型应该如下图所示: 通过add_layer的层层嵌套,实现上一个add_layer的结果返回给…
[原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleNet:多维度识别 4. ResNet:机器超越人类识别 5. DeepFace:结构化图片的特殊处理 6. U-Net:图片生成网络 7. 实例:剖析VGG,用模型进行模型参数可视化,特征提取,目标预测 期待目标: 1. 掌握AlexNet结构特点,神经网络各层之间特征传导关系,模型参数总数计算 2…
[原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实例:卷积神经网络MNIST分类 期待目标: 1. 清楚神经网络优化原理,掌握反向传播计算. 2. 掌握卷积神经网络卷积层的结构特点,关键参数,层间的连接方式. 3. 了解不同卷积神经网络功能层的作用,会进行简单的卷积神经网络结构设计. 4. 能够运行TensorFlow卷积神经网络 MNIST. …
下载:https://pan.baidu.com/s/1qKaDd9PSUUGbBQNB3tkDzw <机器学习实战:基于Scikit-Learn和TensorFlow>高清中文版PDF+高清英文版PDF+源代码 下载:https://pan.baidu.com/s/1IAfr-tigqGE_njrfSATT_w <深度学习之TensorFlow:入门.原理与进阶实战>,李金洪 著. 下载:https://pan.baidu.com/s/1NYYpsxbWBvMn9U7jvj6XS…
前几天把刚拿到了2台GPU机器组装好了,也写了篇硬件配置清单的文章——<深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装>.这两台也在安装Ubuntu 16.04和1080Ti显卡驱动,在安装Ubuntu的时候,踩过无数个坑,心力憔悴(...(。•ˇ‸ˇ•。)…),因此将踩过的坑以及对于的解决方案汇总出来,让大家少踩那些坑,过程实在是太磨人了. 一.配置 系统:Ubuntu16.04.3 GPU:GTX1080Ti 二.总体流程步骤 安装Ubuntu16.04 安装1080T…
一.硬件采购 近年来,人工智能AI越来越多被人们所了解,尤其是AlphaGo的人机围棋大战之后,机器学习的热潮也随之高涨.最近,公司采购了几批设备,通过深度学习(TensorFlow)来研究金融行业相关问题,学习机器学习我们需要满足一定的硬件要求,本文主要是介绍硬件选购的相关事宜. 现在主力的深度学习都是通过多显卡计算来提升系统的计算能力,所以硬件的采购核心是显卡(GPU),下面是整个硬件采购的清单及大致费用如下: 以上的配置一台设备的总共费用大致:2.8W左右.公司购买了2台,费用大致6W,两…
转发——谷歌云官方:一小时掌握深度学习和 TensorFlow 本文转发自新智元,链接如下: http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==&mid=2651992687&idx=2&sn=ac773db1f79828bde0656dd3a6c5fe72&chksm=f121469ec656cf882e44d8fde168987f97bd72ea56c8cb2140842cfdd42bab30c3ae9b73e3e5&…
深度学习之TensorFlow安装与初体验 学习前 搞懂一些关系和概念 首先,搞清楚一个关系:深度学习的前身是人工神经网络,深度学习只是人工智能的一种,深层次的神经网络结构就是深度学习的模型,浅层次的神经网络结构是浅度学习的模型. 浅度学习:层数少于3层,使用全连接的一般被认为是浅度神经网络,也就是浅度学习的模型,全连接的可能性过于繁多,如果层数超过三层,计算量呈现指数级增长,计算机无法计算到结果,所以产生了深度学习概念 深度学习:层数可以有很多层,但是并不是全连接的传递参数,如上图中右边是一个…
深度学习与TensorFlow DNN(深度神经网络算法)现在是AI社区的流行词.最近,DNN 在许多数据科学竞赛/Kaggle 竞赛中获得了多次冠军. 自从 1962 年 Rosenblat 提出感知机(Perceptron)以来,DNN 的概念就已经出现了,而自 Rumelhart.Hinton 和 Williams 在 1986 年发现了梯度下降算法后,DNN 的概念就变得可行了.直到最近 DNN 才成为全世界 AI/ML 爱好者和工程师的最爱. 主要原因在于现代计算能力的可用性,如 GP…
深度学习调用TensorFlow.PyTorch等框架 一.开发目标目标 提供统一接口的库,它可以从C++和Python中的多个框架中运行深度学习模型.欧米诺使研究人员能够在自己选择的框架内轻松建立模型,同时也简化了这些模型的产品离子化. 支持TensorFlow.PyTorch.TorchScript和Keras等深度学习框架. 使用一个API从任何支持的框架运行模型,运行TensorFlow模型看起来就像运行PyTorch模型. x = np.array([1, 2, 3, 4]) y =…
创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络   MINIST数据集分类器简单版本 二次代价函数 sigmoid函数 交叉熵代价函数 对数释然代价函数 拟合 防止过拟合 Dropout 优化器 优化器的使用 如何提升准确率? 1.改每批训练多少个 2.改神经网络中间层(神经元层数,每层的个数,每层用的激活函数,权重的初值用随机正态.要不要防止过拟合) 3.改计算loss的函数:…
前言 如果你是一个完美主义者,那么请绕过此文,请参考<深度学习篇——Tensorflow配置(完美主义模式)> 安装 pip install tensorflow ok,只要不报错,安装就完成了,就可以用了. 错误填坑(不断更新) 1.pip错误:TypeError: parse() got an unexpected keyword argument 'transport_encoding' 解决办法:输入命令 conda install -c anaconda html5lib 然后 co…
TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库,说白了,就是一个库. 小编自己在Ubuntu搭建了深度学习框架TensorFlow,感觉挺简单,现在总结如下. 1.安装Anaconda 在ubuntu系统版本的Anaconda3已经集成了3.6版本的Python,安装步骤如下: a.下载Anoconda3 b.安装:以下操作在系统终端执行 输入yes: 默认安装位置 将Anconda的安装路径添加到环境变量中去,点yes,然后静静等待安装.…
2016年,在一次技术调研的过程中认识到了 Spring Boot ,试用之后便一发不可收拾的爱上它.为了防止学习之后忘记,就在网上连载了 Spring Boot 系列文章,没想到这一开始便与 Spring Boot 深度结缘. 近三年的时间写了一百多篇关于 Spring Boot 的文章(包含两个课程),在写文章的过程中将文中的示例项目托管在 Github 上面,随着学习 Spring Boot 的朋友越来越多,在 Github 上面的关注(Star)人数也越来越多,到现在已经高达 8300…
网上连载了 Spring Boot 系列文章 这个开源项目就是 spring-boot-examples ,这是一个专注帮助初学者学习 Spring Boot 的开源项目,里面分享了各种场景下 Spring Boot 使用示例,此开源项目下都是一个一个独立的小项目,以最小依赖.最简单的方式呈现出来,非常方便初始者学习. spring-boot-examples(star 8333+) 项目主页 https://github.com/ityouknow/spring-boot-examples 产…