YOLO V1损失函数理解】的更多相关文章

YOLO V1损失函数理解: 首先是理论部分,YOLO网络的实现这里就不赘述,这里主要解析YOLO损失函数这一部分. 损失函数分为三个部分: 代表cell中含有真实物体的中心. pr(object) = 1 ① 坐标误差 为什么宽和高要带根号??? 对不同大小的bbox预测中,相比于大bbox预测偏一点,小box预测偏一点更不能忍受.作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width (主要为了平衡小目标检测预测的偏移) ② IOU误差(…
摘要 作者提出了一种新的物体检测方法YOLO.YOLO之前的物体检测方法主要是通过region proposal产生大量的可能包含待检测物体的 potential bounding box,再用分类器去判断每个 bounding box里是否包含有物体,以及物体所属类别的 probability或者 confidence,如R-CNN,Fast-R-CNN,Faster-R-CNN等.YOLO不同于这些物体检测方法,它将物体检测任务当做一个regression问题来处理,使用一个神经网络,直接从…
YOLO v1到YOLO v4(上) 一.  YOLO v1 这是继RCNN,fast-RCNN和faster-RCNN之后,rbg(RossGirshick)针对DL目标检测速度问题提出的另外一种框架.YOLO V1其增强版本GPU中能跑45fps,简化版本155fps. 论文下载:http://arxiv.org/abs/1506.02640 代码下载:https://github.com/pjreddie/darknet YOLO的核心思想 提出了一种新的目标检测方法YOLO.先前的目标检…
前面介绍的R-CNN系的目标检测采用的思路是:首先在图像上提取一系列的候选区域,然后将候选区域输入到网络中修正候选区域的边框以定位目标,对候选区域进行分类以识别.虽然,在Faster R-CNN中利用RPN网络将候选区域的提取以放到了CNN中,实现了end-to-end的训练,但是其本质上仍然是提取先提取候选区域,然后对候选区域识别,修正候选区域的边框位置.这称为tow-stage的方法,虽然在精度已经很高了,但是其速度却不是很好.造成速度不好的主要原因就是候选区域的提取,这就需要一种网络能够直…
前段时间看了YOLO的论文,打算用YOLO模型做一个迁移学习,看看能不能用于项目中去.但在实践过程中感觉到对于YOLO的一些细节和技巧还是没有很好的理解,现学习其他人的博客总结(所有参考连接都附于最后一部分“参考资料”),加入自己的理解,整理此学习笔记. 概念补充:mAP:mAP是目标检测算法中衡量算法精确度的一个指标,其涉及到查准率(Precision)和查全率(Recall).对于目标检测任务,对于每一个目标可以计算出其查准率和查全率,多次实验进行统计,可以得到每个类有一条P-R曲线,曲线下…
损失函数的定义是在region_layer.c文件中,关于region层使用的参数在cfg文件的最后一个section中定义. 首先来看一看region_layer 都定义了那些属性值: layer make_region_layer(int batch, int w, int h, int n, int classes, int coords) { layer l = {}; l.type = REGION; l.n = n; // anchors 的个数, 文章中选择为5 l.batch =…
YOLO出自2016 CVPR You Only Look Once:Unified, Real-Time Object Detection,也是一个非常值得学习的框架,不得不说facebook的技术就是牛啊. 整个训练和检测框架都是端到端,YOLO达到了45帧每秒,Fast YOLO达到了155帧每秒,除了刚开始加载模型有点慢,检测部分确实是非常的快. 整个检测过程分为3个阶段,(1)将图像缩放到448*448(2)通过神经网格进行检测和分类(3)NMS抑制,输出最终结果该模型首先,将输入的图…
RCNN -> SPPNet -> Fast-RCNN -> Faster-RCNN -> FPN YOLO v1-v3 Reference RCNN: Rich feature hierarchies for accurate object detection and semantic segmentation SPPNet: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition…
前言 之前无论是传统目标检测,还是RCNN,亦或是SPP NET,Faste Rcnn,Faster Rcnn,都是二阶段目标检测方法,即分为“定位目标区域”与“检测目标”两步,而YOLO V1,V2,V3都是一阶段的目标检测. 从R-CNN到FasterR-CNN网络的发展中,都是基于proposal+分类的方式来进行目标检测的,检测精度比较高,但是检测速度不行,YOLO提供了一种更加直接的思路: 直接在输出层回归boundingbox的位置和boundingbox所属类别的置信度,相比于R-…
本文有修改,如有疑问,请移步原文. 原文链接:  YOLO v1之总结篇(linux+windows) 此外:  YOLO-V2总结篇   Yolo9000的改进还是非常大的 由于原版的官方YOLOv1是只支持linux 和mac的,如果要自己修改,可能需要走好对哦的坑,同时还得具备一定的技术水平,幸好有革命斗士为我们走出了这一步, 可以参考下面2个YOLO-windows, https://github.com/frischzenger/yolo-windows https://github.…