协同过滤需要注意的三点: gray sheep(有人喜欢追求特别,协同过滤一般只能从共同的人或物间找相似) shilling attack(水军刷好评导致数据错误,无法带来精确的推荐) cold start(冷启动,初次登陆网站,没有给商品打分,怎么推荐) 1.基于memory的CF (1)基于用户的CF Wu,v指的是两个用户之间的相似度 Pa,i指的是a用户对i商品的打分 4.67=用户1给所有商品打分的平均值,即(4+5+5)/3 (2)基于item的CF  计算列与列之间的相关性(商品与…
协同过滤 collaborative filtering 人以类聚,物以群分 相似度 1. Jaccard 相似度 定义为两个集合的交并比: Jaccard 距离,定义为 1 - J(A, B),衡量两个集合的区分度: 为什么 Jaccard 不适合协同过滤?-- 只考虑用户有没有看过,没考虑评分大小 2. 余弦相似度 根据两个向量夹角的余弦值来衡量相似度: 为什么余弦相似度不适合协同过滤?-- 不同用户各自评分总和不一样,导致评分占总比不一样,可能计算出和事实相反的结果. 3. Pearson…
利用用户行为数据 简介: 用户在网站上最简单存在形式就是日志. 原始日志(raw log)------>会话日志(session log)-->展示日志或点击日志 用户行一般分为两种: 1显性反馈:包括用户明确表示对物品喜好的行为(数据量小) 2隐形反馈:网页浏览等(数据量大) 用户行为的统一标准如下: 协同滤波与实验设计: 本文参考<推荐系统实践>这本书,但细节和书中略有不同,因为个人把书中代码组合到一起有些小问题,所以自己小修改了一番,可以运行,与大家分享. 实验数据集: 采用…
协同过滤 —— Collaborative Filtering 协同过滤简单来说就是根据目标用户的行为特征,为他发现一个兴趣相投.拥有共同经验的群体,然后根据群体的喜好来为目标用户过滤可能感兴趣的内容. 协同过滤推荐 —— Collaborative Filtering Recommend 协同过滤推荐是基于一组喜好相同的用户进行推荐.它是基于这样的一种假设:为一用户找到他真正感兴趣的内容的最好方法是首先找到与此用户有相似喜好的其他用户,然后将他们所喜好的内容推荐给用户.这与现实生活中的“口碑传…
因为协同过滤内容比较多,就新开一篇文章啦~~ 聚类和线性回归的实战,可以看:http://www.cnblogs.com/charlesblc/p/6159187.html 协同过滤实战,仍然参考:http://www.cnblogs.com/shishanyuan/p/4747778.html 其中有一些基础和算法类的,会有其他一些文章来做参考. 1.3 协同过滤实例 1.3.1 算法说明 协同过滤(Collaborative Filtering,简称CF,WIKI上的定义是:简单来说是利用某…
原文:http://blog.selfup.cn/1001.html 什么是协同过滤 协同过滤(Collaborative Filtering, 简称CF),wiki上的定义是:简单来说是利用某兴趣相投.拥有共同经验之群体的喜好来推荐使用者感兴趣的资讯,个人透过合作的机制给予资讯相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选资讯,回应不一定局限于特别感兴趣的,特别不感兴趣资讯的纪录也相当重要. 以上定义太拗口,举个简单的例子:我现在多年不看日本anime的新番了,最近突然又想…
本周内容较多,故分为上下两篇文章. 本文为下篇. 一.内容概要 1. Anomaly Detection Density Estimation Problem Motivation Gaussian Distribution Algorithm Building an Anomaly Detection System(创建异常检测系统) Developing and Evaluating an Anomaly Detection System Anomaly Detection vs. Supe…
http://antkillerfarm.github.io/ 向量的范数(续) 范数可用符号∥x∥λ表示. 经常使用的有: ∥x∥1=|x1|+⋯+|xn| ∥x∥2=x21+⋯+x2n−−−−−−−−−−−√ ∥x∥∞=max(|x1|,-,|xn|) 这里不做解释的给出例如以下示意图: 当中,0范数表示向量中非0元素的个数. 上图中的图形被称为lp ball. 表征在同一范数条件下,具有相同距离的点的集合. 范数满足例如以下不等式: ∥A+B∥≤∥A∥+∥B∥(三角不等式) 向量范数推广可…
1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web 应用中利用集体智慧构建更加有趣的应用或者得到更好的用户体验.集体智慧是指在大量的人群的行为和数据中收集答案,帮助你对整个人群得到统计意义上的结论,这些结论是我们在单个个体上无法得到的,它往往是某种趋势或者人群中共性的部分. Wikipedia 和 Google 是两个典型的利用集体智慧的 Web…
1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web 应用中利用集体智慧构建更加有趣的应用或者得到更好的用户体验.集体智慧是指在大量的人群的行为和数据中收集答案,帮助你对整个人群得到统计意义上的结论,这些结论是我们在单个个体上无法得到的,它往往是某种趋势或者人群中共性的部分. Wikipedia 和 Google 是两个典型的利用集体智慧的 Web…