原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自动机器学习.机器学习与最优化算法,选取23篇会议上入选的重点论文进行分析解读,与大家分享.Enjoy! NeurIPS (Conference on Neural Information Processing Systems,神经信息处理系统进展大会)与ICML并称为神经计算和机器学习领域两大顶级学…
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者:周景超 在上一期中介绍了我们团队部分已公开的国际领先的研究成果,近期我们有些新的成果和大家进一步分享. 1 人脸进展 人脸是最重要的视觉信息之一.以貌识人.以貌取人是人的本性,也是最自然.最常用的身份确认和交互方式之一.互联网和移动互联网上每天上传和传播的天文数字级别的照片中有很大一部分都是和人脸相关的(比如国际知名互联网公司Facebook每天都有亿级以上的海量人脸照片和视频上传),因此人脸检测与识别技术在学术界和工业界都备受关注…
通常的图像转换模型(如 StarGAN.CycleGAN.IcGAN)无法实现同时训练,不同的转换配对也不能组合.在本文中,英属哥伦比亚大学(UBC)与腾讯 AI Lab 共同提出了一种新型的模块化多域生成对抗网络架构——ModularGAN,生成的结果优于以上三种基线结果.该架构由几个可重复利用和可组合的模块组成.不同的模块可以在测试时轻松组合,以便在不同的域中高效地生成/转换图像.研究者称,这是首个模块化的 GAN 架构. 据了解,腾讯 AI Lab 共有 19 篇论文入选 ECCV 201…
有人说,「深度学习“等于”深度卷积神经网络算法模型+大规模数据+云端分布式算力」.也有人说,「能够在业内叱咤风云的AI都曾“身经百战”,经历过无数次的训练与试错」.以上都需要海量数据做依托,对于那些数据量匮乏的领域,就衍生出了数据增强技术.即,根据一个原始数据,稍作改动,变成一个对于AI来说的全新的数据. 01 为什么做数据增强? 数据规模的重要性到底怎样呢?可以说,深度学习的火热和蓬勃发展,直接源于普林斯顿大学教授李飞飞及她所带领的团队创作的一个包含百万级图片的数据集ImageNet.工业级人…
通过StartDT AI Lab专栏之前多篇文章叙述,相信大家已经对计算机视觉技术及人工智能算法在奇点云AIOT战略中的支撑作用有了很好的理解.同样,这种业务牵引,技术覆盖的模式也收获了市场的良好反响,而奇点云AIOT在市场的大面积铺开又给算法部门带来了新的挑战,也就是如何进一步的降低算法端计算成本,从而提升业务利润. 目标很简单,就是将现有算法模型在不降低准确性的前提下,缩小模型尺寸以节省硬件存储成本,简化模型计算复杂度,以节省硬件计算成本.这又小又快的模型优化要求,我们一般统称为模型加速问题…
人货场的思路是整个新零售数字化链路的核心,人是整个业务生命周期的起始点,图像算法的首要目标就是从图像中得到“人” .前一篇我们主要讲了Face ID的发展,Face ID帮助商家赋能了线下用户画像,把视觉计算的热情带到支付.安防等各行各业. 诚然,分析人的方式多种多样,各种分析行人的算法中,Face算法在其中有着得天独厚的优势,它在验证身份方面是最精准的(可以精确到支付验证),但Face算法在数量统计的准确度肯定不是最优的.因为很多场景下的Face ID受到了光照遮挡的影响,质量参差不齐,所以基…
“顾客就是上帝”,这句西谚揭示了顾客占据着商业活动中心地位这一客观规律.为了能更好地服务顾客,优化商家自身的服务与产品,对顾客的分析与需求调研一直是商业经营分析中的重中之重. 在商业互联网化.社会数字化的今天,这一规律越发明显.从Web1.0时代开始,Cookie就被发明出来,用以对“顾客”进行数字化描述和建档并归一化其互联网下的数字行为. ​ 其后的Web2.0时代,随着移动互联网的发展,个人生活中的屏—人机交互端口变多了,原先用Cookie对 “顾客” 进行数字化的方式已无法完成对个人全渠道…
https://mp.weixin.qq.com/s/trkCGvpW6aCgnFwLxrGmvQ 撰稿 & 整理|Debra 编辑|Debra 导读:在 2018 云栖人工智能峰会上,阿里巴巴推出的人工智能产品和相关服务真不少,包括一款天猫精灵人机交流车载系统,两款搭载天猫精灵系统的移动机器人太空蛋.太空梭,汽车战略重大升级,推出车路协同系统以及首款 L4 车辆协同自动驾驶新能源车.AI 前线对这些产品介绍做了整理,希望可以帮助大家了解阿里这段时间在智能语音.自动驾驶方面的最新研究和进展. …
好未来AI Lab和科赛联合举办的TAIL CAMP——AI实战训练营 图像识别: 卷积层是所有CNN网络中必不可少的模块,请解释为什么3X3的卷积是最为常用的卷积核大小?小尺寸卷积核(1x1)和大尺寸卷积核(如7x7)都具有哪些优势和劣势,各自适用于什么场景?卷积核的尺寸可否为偶数,为什么? 假设我们有一个已经训练好的网络模型,有哪些方法可以在尽可能保证精度损失小的前提下实现模型压缩及网络加速?分别有什么需要注意的地方? 鞍点.局部极值以及过拟合是网络训练过程中经常发生的问题,请尽可能列举出三…
在人工智能和大数据时代,越来越多的云上数据和越来越智能的模型开始辅助人们做出各种最优决策,从运营效率.成本节约.最优配置等方方面面,实现降本增效,进一步提升商业效率.京东.美团.滴滴.顺丰等众多知名厂商,都通过运筹优化平台,改造其供应链.智能派单.司乘匹配.智能分拣等等. 零售行业环节众多,从生产到仓库.到线下门店的供应链中,即使最终产品的需求非常稳定,长鞭效应也经常会发生.原因在于供应链中各节点只根据其相邻的需求信息进行生产或者供应决策时,需求信息的不真实性会沿着供应链逆流而上,逐级放大.更准…