GPU上创建目标检测Pipeline管道 Creating an Object Detection Pipeline for GPUs 今年3月早些时候,展示了retinanet示例,这是一个开源示例,演示了如何加快gpu目标检测管道的训练和部署.在圣何塞举行的英伟达GPU技术会议上介绍了这个项目.这篇文章讨论了这项工作的动机,对体系结构的一个高级描述,以及所采用的优化的一个简单的介绍.如果对GPUs上的目标检测还不熟悉,建议参考GPUs上的实时目标检测10分钟开始. 理论基础 虽然有几个优秀的…
目标检测与识别是计算机视觉中最常见的挑战之一.属于高级主题. 本章节将扩展目标检测的概念,首先探讨人脸识别技术,然后将该技术应用到显示生活中的各种目标检测. 1 目标检测与识别技术 为了与OpenCV 学习笔记 05 人脸检测和识别进行区分:需重新说明一下什么是目标检测. 目标检测是一个程序,它用来确定图像的某个区域是否有要识别的对象,对象识别是程序识别对象的能力.识别通常只处理已检测到对象的区域.若人们总是会在有人脸图像的区域去识别人脸. 在计算机视觉中有很多目标检测和识别的技术,本章会用到:…
参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-CNN [3]Faster R-CNN: towards real-time object detection with region proposal networks 1. 概述 图像分类,检测及分割是计算机视觉领域的三大任务.图像分类模型是将图像划分为单个类别,通常对应于图像中最突出的物体.但是…
slides 讲得是相当清楚了: http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf 配合中文翻译来看: https://www.cnblogs.com/cx2016/p/11385009.html default boxes 核心点讲解 及 .cpp 代码见:https://www.cnblogs.com/sddai/p/10206929.html 小哥的后续论文: PUBLICATIONS Frustum PointNets f…
​前言: 目标检测是计算机视觉中的一项传统任务.自2015年以来,人们倾向于使用现代深度学习技术来提高目标检测的性能.虽然模型的准确性越来越高,但模型的复杂性也增加了,主要是由于在训练和NMS后处理过程中的各种动态标记.这种复杂性不仅使目标检测模型的实现更加困难,而且也阻碍了它从端到端风格的模型设计. 关注公众号CV技术指南,及时获取更多计算机视觉技术总结文章. 早期方法 (2015-2019) 自2015年以来,人们提出了各种深度学习中的目标检测方法,给该领域带来了巨大的影响.这些方法主要分为…
摘要:本文解读了<Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection>,该论文针对目标检测任务,提出了新的高斯检测框(GBB),及新的计算目标相似性的方法(ProbIoU). 本文分享自华为云社区<论文解读系列十九:用于目标检测的高斯检测框与ProbIoU>,作者:BigDragon. 论文地址: https://arxiv.org/abs/2106.06072…
  早期目标检测研究以anchor-based为主,设定初始anchor,预测anchor的修正值,分为two-stage目标检测与one-stage目标检测,分别以Faster R-CNN和SSD作为代表.后来,有研究者觉得初始anchor的设定对准确率的影响很大,而且很难找到完美的预设anchor,于是开始不断得研究anchor-free目标检测算法,意在去掉预设anchor的环节,让网络自行学习anchor的位置与形状,在速度和准确率上面都有很不错的表现.anchor-free目标检测算法…
目录 目录 目录 前言 一,精确率.召回率与F1 1.1,准确率 1.2,精确率.召回率 1.3,F1 分数 1.4,PR 曲线 1.4.1,如何理解 P-R 曲线 1.5,ROC 曲线与 AUC 面积 二,AP 与 mAP 2.1,AP 与 mAP 指标理解 2.2,近似计算AP 2.3,插值计算 AP 2.4,mAP 计算方法 三,目标检测度量标准汇总 四,参考资料 前言 为了了解模型的泛化能力,即判断模型的好坏,我们需要用某个指标来衡量,有了评价指标,就可以对比不同模型的优劣,并通过这个指…
参考:单发多框检测(SSD) 本文代码被我放置在 Github:https://github.com/XinetAI/CVX/blob/master/app/gluoncvx/ssd.py 关于 SSD 的训练见:https://github.com/XinetAI/CVX/blob/master/目标检测/训练SSD.ipynb 虽然李沐大神的教程关于 SSD 的讲解很不错,但是大都是函数式的编程,本文我将 SSD 的几个基本组件进行封装,使得 SSD 可以像堆积木一样来进行组织.基网络你可以…
看完这篇就懂了. IoU intersect over union,中文:交并比.指目标预测框和真实框的交集和并集的比例. mAP mean average precision.是指每个类别的平均查准率的算术平均值.即先求出每个类别的平均查准率(AP),然后求这些类别的AP的算术平均值.其具体的计算方法有很多种,这里只介绍PASCAL VOC竞赛(voc2010之前)中采用的mAP计算方法,该方法也是yolov3模型采用的评估方法,yolov3项目中如此解释mAP,暂时看不明白可以先跳过,最后再…