Borůvka MST算法】的更多相关文章

基本思路: 用定点数组记录每个子树的最近邻居. 对于每一条边进行处理: 如果这条边连成的两个顶点同属于一个集合,则不处理,否则检测这条边连接的两个子树,如果是连接这两个子树的最小边,则更新 (合并). 时间复杂度平均 \(O(V+E)\),最坏 \(O((V+E)\log V)\). 下面是 Borůvka 算法演示动图:(源:Wikimedia) 程序代码: struct node {int x, y, w; } edge[M]; int d[N]; // 各子树的最小连外边的权值 int e…
题目链接 \(Description\) 有一张\(n\)个点的完全图,每个点的权值为\(a_i\),两个点之间的边权为\(a_i\ xor\ a_j\).求该图的最小生成树. \(n\leq2*10^5,0\leq ai<2^{30}\). \(Solution\) 代码好神啊. 依旧是从高到低考虑每一位.对于当前位i,如果所有点在这一位都为0或1,不需要管(任何边在这一位都为0). 否则可以把点分为两个集合,即i位为0和1的集合,这两个集合间必须存在一条边,且边权这一位只能为1. 考虑怎么高…
原文链接 https://www.cnblogs.com/cly-none/p/CSA72G.html 题意:有一个\(n \times n\)的矩阵\(A\),\(m\)次操作,每次在\(A\)上三角部分的一个子矩形中加上一个数.最后构造\(n\)个点的图\(G\),且对于所有\(i,j \ (i < j)\),边\((i,j)\)的边权为\(A_{i,j}\).求图\(G\)的最小生成树的边权和. \(n,m \leq 10^5\) 先把上三角矩阵补成邻接矩阵.这样每次操作就是加两个邻接矩阵…
一般求最小生成树的时候,最流行的是Kruskal算法,一种基于拟阵证明的贪心,通过给边排序再扫描一次边集,利用并查集优化得到,复杂度为\(O(ElogE)\).另一种用得比较少的是Prim算法,利用优先队列实现做到\(O(ElogV)\). 在翻ZYQN博客的时候,看见他写的位运算最小生成树中提到了Borůvka算法,于是学了一下. 算法 Borůvka算法是1926年发明的,是最早发明的最小生成树算法,复杂度为\(O(ElogV)\). 算法思想非常简单.初始时每个点都是一颗不同的树,每次遍历…
做了个对比.Borůvka算法对于稠密图效果特别好.这两个都是求生成森林的算法.Prim+heap+tarjan过于难写不写了. V=200,E=1000 Kruskal method 487504811 Time usage: 129 us Bor(uc)uvka method 487504811 Time usage: 94 us V=500,E=3000 Kruskal method 1068863143 Time usage: 431 us Bor(uc)uvka method 1068…
Borůvka algorithm 我好无聊啊,直接把wiki的算法介绍翻译一下把. wiki关于Borůvka algorithm的链接:链接 Borůvka algorithm是一个在所有边权都是不同的图中找到最小生成树的贪心算法.(其实边权相同也可以做,具体见后文),或者在一个不联通的图找到最小生成树. 它由 Otakar Borůvka (人名)第一次发表在1926年,被作为给Moravia(一个地区)一种有效的电网建设方法.这个算法被Choquet在1938年重新发现,在1951年,它…
最小生成树MST(Minimum Spanning Tree) (1)概念 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边,所谓一个 带权图 的最小生成树,就是原图中边的权值最小的生成树 ,所谓最小是指边的权值之和小于或者等于其它生成树的边的权值之和. (2)性质 一个连通图可以有多个生成树: 一个连通图的所有生成树都包含相同的顶点个数和边数: 生成树当中不存在环: 移除生成树中的任意一条边都会导致图的不连通, 生成树的边最少特…
系列索引: NOIp 图论算法专题总结 (1) NOIp 图论算法专题总结 (2) NOIp 图论算法专题总结 (3) 最短路 Floyd 基本思路:枚举所有点与点的中点,如果从中点走最短,更新两点间距离值.时间复杂度 \(O(V^3 )\). int n, m, f[N][N]; memset(f, 0x3f, sizeof(f)); for (int i=1, a, b, w; i<=m; i++) { scanf("%d%d%d", &a, &b, &…
「CSA72」MST 题目大意:有一个大小为 \(n\) 的无向完全图,\(x, y\) 之间的边权值为 \(a[\min(x,y)][\max(x,y)]\) ,初始为0,进行 \(m\) 次修改,每次将一个矩形的权值加上 \(w\) ,求出最后这张完全图的最小生成树的边权和.\(n,m \leq 100000\). 解题思路:用 Borůvka 求最小生成树,每一轮求出每一个点所在联通块向外连的一条边权最小的边,并用线段树+扫描线维护最小值以及最小值所在的联通块编号.为了找到不在同一个联通块…
最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小支撑树(minimum spanning tree)算法.给定一个无向图G,并且它的每条边均权值,则MST是一个包括G的所有顶点及边的子集的图,这个子集保证图是连通的,并且子集中所有边的权值之和为所有子集中最小的. 本节中介绍三种算法求解图的最小生成树:Prim算法.Kruskal算法和Boruvk…