「CSA72」MST 题目大意:有一个大小为 \(n\) 的无向完全图,\(x, y\) 之间的边权值为 \(a[\min(x,y)][\max(x,y)]\) ,初始为0,进行 \(m\) 次修改,每次将一个矩形的权值加上 \(w\) ,求出最后这张完全图的最小生成树的边权和.\(n,m \leq 100000\). 解题思路:用 Borůvka 求最小生成树,每一轮求出每一个点所在联通块向外连的一条边权最小的边,并用线段树+扫描线维护最小值以及最小值所在的联通块编号.为了找到不在同一个联通块…