最近在摸mxnet和tensorflow.两个我都搭起来了.tensorflow跑了不少代码,总的来说用得比较顺畅,文档很丰富,api熟悉熟悉写代码没什么问题. 今天把两个平台做了一下对比.同是跑mnist,tensorflow 要比mxnet 慢一二十倍.mxnet只需要半分钟,tensorflow跑了13分钟. 在mxnet中如何开跑? cd /mxnet/example/image-classification python train_mnist.py我用的是最新的mxnet版本.运行脚…
//本文作者:cuifuan Spring全家桶————[SpringBoot入门到跑路] 对于之前的Spring框架的使用,各种配置文件XML.properties一旦出错之后错误难寻,这也是为什么SpringBoot被推上主流的原因,SpringBoot的配置简单,说5分钟能从框架的搭建到运行也不为过,现在更是微服务当道,所以在此总结下SpringBoot的一些知识,新手教程. 1.在官网快速创建SpringBoot项目 Gradle是一个基于Apache Ant和Apache Maven概…
基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html  摘要 在前面的博文中,我详细介绍了Caffe的网络结构和求解文件,还介绍了如何制作LMDB和Hdf5数据源文件.但是我们还没有完整的介绍过如何在Caffe框架下去训练一个神经网络模型,在本篇博文中我将从最经典.简单的卷积神经网络Lenet(CNN的开端)和最简单的数据集MNIST(手写数字)出发,详细介绍整个网络的训练与测试过程. 1. …
import osimport lr as lrimport tensorflow as tffrom pyspark.sql.functions import stddevfrom tensorflow.keras import datasetsos.environ['TF_CPP_MIN_LOG_LEVEL']='2' #只打印error的信息(x,y),_=datasets.mnist.load_data()#x: [60k,28,28]#y: [60k]x=tf.convert_to_t…
用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学习之二:Neural art http://phunter.farbox.com/post/mxnet-tutorial2…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1.1  运行环境说明 1.1.1 硬软件环境 线程,主频2.2G,10G内存 l  虚拟软件:VMware® Workstation 9.0.0 build-812388 l  虚拟机操作系统:CentOS6.5 64位,单核 l  虚拟机运行环境: Ø  JDK:1.7.0_55 64位 位) Ø  Scala:2.10.4 Ø  Spark:1.1.0(需要编译) Ø  Hive:0.13.1…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Tachyon介绍 1.1 Tachyon简介 随着实时计算的需求日益增多,分布式内存计算也持续升温,怎样将海量数据近乎实时地处理,或者说怎样把离线批处理的速度再提升到一个新的高度是当前研究的重点.近年来,内存的吞吐量成指数倍增长,而磁盘的吞吐量增长缓慢,那么将原有计算框架中文件落地磁盘替换为文件落地内存,也是提高效率的优化点. 目前已经使用基于内存计算的分布式计算框架有:Spark.Impala…
反正基本上是给自己看的,直接贴写过注释后的代码,可能有的地方理解不对,你多担待,看到了也提出来(基本上对未来的自己说的),三层跑到了97%,毕竟是第一个例子,主要就是用来理解MXNet怎么使用. #导入需要的模块 import numpy as np #numpy只保存数值,用于数值运算,解决Python标准库中的list只能保存对象的指针的问题 import os #本例子中没有使用到 import gzip #使用zlib来压缩和解压缩数据文件,读写gzip文件 import struct…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .简介 1.1 Spark简介 年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处,Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Spark Streaming.MLLib和GraphX等组件,也就是BDAS(伯克利数据分析栈),这些组件逐渐形成大数据处理一站式解决平台.从各方面报道来看Spark抱负并非池鱼,…
[注] 1.该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取: 2.Spark编译与部署将以CentOS 64位操作系统为基础,主要是考虑到实际应用一般使用64位操作系统,内容分为三部分:基础环境搭建.Hadoop编译安装和Spark编译安装,该环境作为后续实验基础: 3.文章演示了Hadoop.Spark的编译过程,同时附属资源提供了编译好的安装包,觉得编译费时间可以直接使用这些编译好的安装包进行部署. 1.运行环境说明 1.1 硬软件环境 线程,主频…