numpy矩阵运算--矩阵乘法】的更多相关文章

1)元素对应相乘,使用 multiply 函数或 * 运算符来实现 a = np.array([2,2,2])b = np.array([3,3,3]) c1 = a*a c1 array([4, 4, 4]) c2 = np.multiply(a,b) c2 array([6, 6, 6]) 2)矩阵相乘,使用 dot函数或 @运算符来实现 a = np.array([[2,2,2],[1,1,1]]) #a.shape(2, 3) c = np.array([[3,4],[1,0],[1,1…
import numpy a = numpy.array([[,], [,]]) b = numpy.array([[,], [,]]) 星乘表示矩阵内各对应位置相乘,矩阵a*b下标(0,0)=矩阵a下标(0,0) x 矩阵b下标(0,0): 点乘表示求矩阵内积,二维数组称为矩阵积(mastrix product). 数学上的概念 不一样 1.乘积用于矩阵相乘,表示为C=A*B,A的列数与B的行数必须相同,C也是矩阵,C的行数等于A的行数,C的列数等于B的列数.Cij为A的第i行与B的第j列的点…
数学意义上的矩阵乘法 注意事项: 1.当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘. 2.矩阵C的行数等于矩阵A的行数,C的列数等于B的列数. 3.乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和. 乘积-哈达马积(hadamard product) 乘积-克罗内克乘积 MatLab中的乘法()和点乘(.) a * b 是进行矩阵相乘, a.*b是a矩阵的每一个元素乘以b矩阵对应位置的元素 形成的一个新矩阵. Numpy In [1…
1) 用 numpy读入csv文件是报错 UnicodeDecodeError: 'gbk' codec can't decode byte 0xbf in position 2: illegal multibyte sequence loadtxt 写法没有问题: 主要是csv文件的存储有问题: import numpy as np A = np.loadtxt("A.csv",dtype = np.int , delimiter = ",") 主要是csv文件的…
1)点乘(即“ * ”) ---- 各个矩阵对应元素做乘法  若 w 为 m*1 的矩阵,x 为 m*n 的矩阵,那么通过点乘结果就会得到一个 m*n 的矩阵. 若 w 为 m*n 的矩阵,x 为 m*n 的矩阵,那么通过点乘结果就会得到一个 m*n 的矩阵. w的列数只能为 1 或 与x的列数相等(即n),w的行数与x的行数相等 才能进行乘法运算: 2)矩阵乘 ---- 按照矩阵乘法规则做运算 若 w 为 m*p 的矩阵,x 为 p*n 的矩阵,那么通过矩阵相乘结果就会得到一个 m*n 的矩阵…
NumPy库的核心是矩阵及其运算. 使用array()函数可以将python的array_like数据转变成数组形式,使用matrix()函数转变成矩阵形式. 基于习惯,在实际使用中较常用array而少用matrix来表示矩阵. 然后即可使用相关的矩阵运算了 import numpy as np a = [[1,2,3],[4,5,5],[4,5,5]] len = a.shape[0] #多维数组的行数 print(a.dtype) #输出元素类型 #另外也还可以使用切片方式来处理数组 然后是…
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的mat…
题目描述 请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法. 思路分析 根据wikipedia上的介绍:两个矩阵的乘法仅当第一个矩阵B的列数和另一个矩阵A的行数相等时才能定义.如A是m×n矩阵和B是n×p矩阵,它们的乘积AB是一个m×p矩阵,它的一个元素其中 1 ≤ i ≤ m, 1 ≤ j ≤ p. 值得一提的是,矩阵乘法满足结合律和分配率,但并不满足交换律,如下图所示的这个例子,两个矩阵交换相乘后,结果变了: 下面咱们来具体解决这个矩阵相乘的问题. 解法一.暴力解法 其实,通过前面的分析…
关于python中的矩阵乘法,我们一般有两种数据格式可以实现:np.array()类型和np.mat()类型: 对于这两种数据类型均有三种操作方式: (1)乘号 * (2)np.dot() (3)np.multiply() 而这三种操作方式在操作这两种数据格式时又有点区别,下面一一列出来: import numpy as np #np.array() type #1. np.dot() a = np.array([[1 , 2] , [3 , 4]] , dtype = np.float) b…
一.  np.dot() 1.同线性代数中矩阵乘法的定义.np.dot(A, B)表示: 对二维矩阵,计算真正意义上的矩阵乘积. 对于一维矩阵,计算两者的内积. 2.代码 [code] import numpy as np # 2-D array: 2 x 3 two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]]) # 2-D array: 3 x 2 two_dim_matrix_two = np.array([[1, 2], [3, 4],…