Trigger Word Detection Welcome to the final programming assignment of this specialization! In this week's videos, you learned about applying deep learning to speech recognition. In this assignment, you will construct a speech dataset and implement an…
Expected OutputTrigger Word Detection Welcome to the final programming assignment of this specialization! In this week's videos, you learned about applying deep learning to speech recognition. In this assignment, you will construct a speech dataset a…
1. Trigger Word Detection 我们的触发词将是 "Activate.".每当它听到你说 "Activate.",它就会发出 "chiming" 的声音. 在此作业结束时,您将能够记录您自己谈话的片段,并让算法在检测到您说"Activate."时触发一个钟声: 构成一个语音识别项目 合成和处理音频记录以创建train/dev数据集 训练触发词检测模型 并 进行预测 import numpy as np fr…
2 Natural Language Processing & Word Embeddings 2.1 Word Representation(单词表达) vocabulary,每个单词可以使用1-hot表示,写作\(O^{5391}\)之类,上标可以变.只是用1-hot,不能知道任意两个单词的关系,例如man/woman;king/queen;apple/orange. 特征化表示:词嵌入(Featurized representation:word embedding).一个特征,使用-1到…
Sequence Models This is the fifth and final course of the deep learning specialization at Coursera which is moderated by deeplearning.ai Here are the course summary as its given on the course link: This course will teach you how to build models for n…
第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 基础模型(Basic Models) 在这一周,你将会学习 seq2seq(sequence to sequence)模型,从机器翻译到语音识别,它们都能起到很大的作用,从最基本的模型开始.之后你还会学习集束搜索(Beam search)和注意力模型(Attention Model),一直到最后的音频模型,比如语音. 现在就开始吧,比如你想通过输入一个法语句子,比如这句 "Jane…
About this Course This course will teach you how to build models for natural language, audio, and other sequence data. Thanks to deep learning, sequence algorithms are working far better than just two years ago, and this is enabling numerous exciting…
Lesson 5 Sequence Models 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第五门课程的课程笔记. 参考了其他人的笔记继续归纳的. 符号定义 假如我们想要建立一个能够自动识别句中人名地名等位置的序列模型,也就是一个命名实体识别问题,这常用于搜索引擎.命名实体识别系统可以用来查找不同类型的文本中的人名.公司名.时间.地点.国家名和货币名等等. 我们输入语句 "Harry Potter and Herminoe Granger invented a new s…
参考 1. 基础模型(Basic Model) Sequence to sequence模型(Seq2Seq) 从机器翻译到语音识别方面都有着广泛的应用. 举例: 该机器翻译问题,可以使用"编码网络(encoder network)"+"解码网络(decoder network)"两个RNN模型组合的形式来解决. encoder network将输入语句编码为一个特征向量,传递给decoder network,完成翻译.具体模型结构如下图所示: 其中,encoder…
1. 基础模型 A. Sequence to sequence model:机器翻译.语音识别.(1. Sutskever et. al., 2014. Sequence to sequence learning with neural networks.   2. Cho et. al., 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation.) B…