采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs,使用agent串联 根据需求,首先定义以下3大要素 第一台flume agent l  采集源,即source——监控文件内容更新 :        exec  ‘tail -F file’ l  下沉目标,即sink——数据的发送者,实现序列化  :  avro sink l  Source和sink之间的传递通道——channel,可用file channel 也可以用 内存ch…
有两个海量日志文件存储在hdfs上, 其中登陆日志格式:user,ip,time,oper(枚举值:1为上线,2为下线):访问之日格式为:ip,time,url,假设登陆日志中上下线信息完整,切同一上下线时间段内是用的ip唯一,计算访问日志中独立user数量最多的前10个url,用MapReduce实现. 提示:1.要统计前10,需要两个步骤,第一个步骤实现join,统计出每个url对应的独立用户数,第二步骤求出top102.两个大表join,用同一job多输入3.要根据ip字段join,所以要…
具体见文档,以下只是简单笔记(内容不全) 1.agent Flume中最核心的角色是agent,flume采集系统就是由一个个agent连接起来所形成的一个或简单或复杂的数据传输通道.对于每一个Agent来说,它就是一个独立的守护进程(JVM),它负责从数据源接收数据,并发往下一个目的地,如下图所示: 每一个agent相当于一个数据(被封装成Event对象)传递员,内部有三个组件: Source:数据源组件,用于跟数据源对接,以获取数据:它有各种各样的内置实现(若是source从kafka中读取…
引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用介绍.本文主要讲解如何搭建Hadoop+Hive的环境. 一.环境准备 1,服务器选择 本地虚拟机 操作系统:linux CentOS 7 Cpu:2核 内存:2G 硬盘:40G 说明:因为使用阿里云服务器每次都要重新配置,而且还要考虑网络传输问题,于是自己在本地便搭建了一个虚拟机,方便文件的传输以…
引言 在上一篇 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机) 和之前的大数据学习系列之二 ----- HBase环境搭建(单机) 中成功搭建了Hive和HBase的环境,并进行了相应的测试.本文主要讲的是如何将Hive和HBase进行整合. Hive和HBase的通信意图 Hive与HBase整合的实现是利用两者本身对外的API接口互相通信来完成的,其具体工作交由Hive的lib目录中的hive-hbase-handler-*.jar工具类来实现,通信原理如下图…
引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合HBase,并且测试成功了.在之前的大数据学习系列之一 ----- Hadoop环境搭建(单机) : http://www.panchengming.com/2017/11/26/pancm55/ 中成功的搭建了Hadoop的环境,本文主要讲的是Hadoop+Spark 的环境.虽然搭建的是单机版,…
引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单机的搭建,是因为作为个人学习的话,单机已足以,好吧,说实话是自己的电脑不行,使用虚拟机实在太卡了... 整个的集群搭建是在公司的测试服务搭建的,在搭建的时候遇到各种各样的坑,当然也收获颇多.在成功搭建大数据集群之后,零零散散的做了写笔记,然后重新将这些笔记整理了下来.于是就有了本篇博文. 其实我在搭…
前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为hive默认使用的引擎是MapReduce.因此就将spark作为hive的引擎来对hbase进行查询,在成功的整合之后,我将如何整合的过程写成本篇博文.具体如下! 事前准备 在进行整合之前,首先确保Hive.HBase.Spark的环境已经搭建成功!如果没有成功搭建,具体可以看我之前写的大数据学习系…
大数据学习之Linux进阶 1-> 配置IP 1)修改配置文件 vi /sysconfig/network-scripts/ifcfg-eno16777736 2)注释掉dhcp #BOOTPROTO="dhcp" 3)添加配置(windows->ipconfig -all) IPADDR=192.168.50.179 NETMASK=225.255.255.0 GATEWAY=192.168.50.1 DNS1=219.141.136.10 4)重启网卡 service…
大数据学习之Linux基础 01:Linux简介 linux是一种自由和开放源代码的类UNIX操作系统.该操作系统的内核由林纳斯·托瓦兹 在1991年10月5日首次发布.,在加上用户空间的应用程序之后,成为Linux操作系统. Linux也是自由软件和开放源代码软件发展中最著名的例子. 应用:长时间的运行编写的程序代码,可以安装在各种计算机硬件设备中,如: 手机.平板电脑.路由器等 安卓最底层运行在linux. 02:Linux的分类 各种版本 1->Linux根据市场的需求不同,基本分两个方向…
一.什么是Hadoop? Hadoop可以简单的理解为一个数据存储和数据分析分布式系统.随着互联网的普及产生的数据是非常的庞大的,那么我们怎么去处理这么大量的数据呢?传统的单一计算机肯定是完成不了的,那么大体的出路只有两条,第一种是研究更牛逼的计算机(比如说超级计算机和量子计算机),但是超级计算机和量子计算机研究耗费的时间和金钱是难以想象的,第二条就是集群计算(数据量巨大一台计算机不行,我一百台,一万台计算机处理总可以了吧?)那么Hadoop就是后者. Hadoop并不是去强化某一台计算机的计算…
Storm是一个分布式的.高容错的实时计算系统.Storm适用的场景: 1.Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中. 2.由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用. 那么下面就对大数据学习思路里的strom流式计算进行简单分解,了解一下在学习大数据中应该了解哪些流式计算的知识. 1.redis缓存系统大纲 学习内容:Redis的特点.安装如何使用命令客户端,redis的字符串类型.…
给大家分享一下Spark是什么?如何用Spark进行数据分析,对大数据感兴趣的小伙伴就随着小编一起来了解一下吧.     大数据在线学习 什么是Apache Spark? Apache Spark是一个为速度和通用目标设计的集群计算平台. 从速度的角度看,Spark从流行的MapReduce模型继承而来,可以更有效地支持多种类型的计算,如交互式查询和流处理.速度在大数据集的处理中非常重要,它可以决定用户可以交互式地处理数据,还是等几分钟甚至几小时.Spark为速度提供的一个重要特性是其可以在内存…
hadoop生态系统 zookeeper负责协调 hbase必须依赖zookeeper flume 日志工具 sqoop 负责 hdfs dbms 数据转换 数据到关系型数据库转换 大数据学习群119599574 hbase简介 hadoop database 是一个高可靠性.高性能.面向列.可伸缩.实时读写的分布式数据库 利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce 来处理Hbase中的海量数据,利用Zookeeper作为其分布式系统服务 主要用来存储非结…
1.Hadoop生态概况 Hadoop是一个由Apache基金会所开发的分布式系统集成架构,用户可以在不了解分布式底层细节情况下,开发分布式程序,充分利用集群的威力来进行高速运算与存储,具有可靠.高效.可伸缩的特点. 大数据学习资料分享群119599574 Hadoop的核心是YARN,HDFS,Mapreduce,常用模块架构如下 2.HDFS 源自谷歌的GFS论文,发表于2013年10月,HDFS是GFS的克隆版,HDFS是Hadoop体系中数据存储管理的基础,它是一个高度容错的系统,能检测…
大数据介绍 什么是大数据以及有什么特点 大数据:是指无法在一定时间内用常规软件工具对其内容进行抓取.管理和处理的数据集合. 大数据是一种方法论:“一切都被记录,一切都被数字化,从数据中寻找需求,寻找知识,发掘价值”. 大数据技术:指从各种各样类型的数据中快速获得有价值信息的能力. 大数据的特点:数据体量巨大.数据类型繁多.价值密度低.产生和处理速度快 新的大数据处理平台: 开源:Hadoop.Spark(Apache).Atorm(Twitter).MongoDb 商用:IBM PureData…
作者: seriouszyx 首发地址:https://seriouszyx.top/ 代码均可在 Github 上找到(求Star) 最近想要了解一些前沿技术,不能一门心思眼中只有 web,因为我目前对 Java 语言及其生态相对熟悉,所以在网上搜集了 Hadoop 相关文章,并做了整合. 本篇文章在于对大数据以及 Hadoop 有一个直观的概念,并上手简单体验. Hadoop 基础概念 Hadoop 是一个用 Java 实现的开源框架,是一个分布式的解决方案,将大量的信息处理所带来的压力分摊…
一.hadoop视频学习(入门到精通) 二.数据挖掘(入门到精通) 三.Hadoop学习路线 1.开发前期准备 首先,如果你没有Java和Linux基础,建议你先简单学一下这两门课程,此宝贝里面都为你准备好了. 2.云计算前期了解 当你初步掌握了Java和Linux基础后,你就可以进入大数据的学习了,我们可以先对云计算有一个前期的了解,在前期了解云计算这个文件夹中,包含了6套云计算相关的视频,你不用全部听完,建议听前两个. 4.storm学习 本宝贝为大家准备3套Storm的学习视频,第一套是传…
变量的定义 val a: Int = 1 var b = 2 方法和函数 区别:函数可以作为参数传递给方法 方法: def test(arg: Int): Int=>Int ={ 方法体 } val fun = (test _: Int =>(Int=>Int))=>函数体 逻辑执行语句 val a = if(条件){ 执行逻辑 返回值 }else{ 执行逻辑 } while(条件){ 执行逻辑 } val arr = Array(1,2,3,4,5) for(i <- 0…
Spark工作机制以及API详解 本篇文章将会承接上篇关于如何部署Spark分布式集群的博客,会先对RDD编程中常见的API进行一个整理,接着再结合源代码以及注释详细地解读spark的作业提交流程,调度机制以及shuffle的过程,废话不多说,我们直接开始吧! 1. Spark基本API解读 首先我们写一段简单的进行单词统计的代码,考察其中出现的API,然后做出整理: import org.apache.spark.SparkConf; import org.apache.spark.api.j…
HDFS基本API的应用(包含IDEA的基本设置) 在上一篇博客中,本人详细地整理了如何从0搭建一个HA模式下的分布式Hadoop平台,那么,在上一篇的基础上,我们终于可以进行编程实操了,同样,在编程前需要做一些准备工作,好了,那我们就开始吧! 1. 编程准备 在后续的学习中,我们基本都是在用IntelliJ IDEA这款集成开发环境,所以在Windows端,我们首先需要准备以下这三款软件: 1)IntelliJ IDEA软件下载并安装,盗版即可,激活码自己上百度搜,本人使用的版本是Intell…
Linux环境搭建完整操作流程(包含mysql的安装步骤) 从现在开始,就正式进入到大数据学习的前置工作了,即Linux的学习以及安装,作为运行大数据框架的基础环境,Linux操作系统的重要性自然不言而喻,我将分成两个部分来做梳理,第一部分是实操部分,即整个从0搭建Linux的完整操作流程,第二部分是理论部分,将会梳理Linux操作系统的各种指令以及基本知识,好了,那么我们开始吧! 1. 安装准备 安装Linux虚拟机之前我们首先要准备两个东西:VMware以及Centos的镜像文件 安装VMw…
Java集合框架学习笔记 1. Java集合框架中各接口或子类的继承以及实现关系图: 2. 数组和集合类的区别整理: 数组: 1. 长度是固定的 2. 既可以存放基本数据类型又可以存放引用数据类型 3. 存放进数组的必须是相同类型的数据 VS 集合类: 1. 长度是可变的 2. 只能存放对象的引用 3. 存放进集合的可以是不同的数据类型 3. 集合类常用API源码分析 在之后的大数据学习中,灵活运用各种各样的数据结构可以说是一项基本技能了,因此,了解各种数据结构的底层源码将有助于用户更好地使用各…
文章目录 一 MapReduce概念 1.1 为什么要MapReduce 1.2 MapReduce核心思想 1.3 MapReduce进程 1.4 MapReduce编程规范(八股文) 1.5 MapReduce程序运行流程分析 二 MapReduce理论篇 2.1 Writable序列化 2.1.1 常用数据序列化类型 2.1.2 自定义bean对象实现序列化接口 2.2 InputFormat数据切片机制 2.2.1 FileInputFormat切片机制 2.2.2 CombineTex…
文章目录 一 HDFS概念 1.1 概念 1.2 组成 1.3 HDFS 文件块大小 二 HFDS命令行操作 三 HDFS客户端操作 3.1 eclipse环境准备 3.1.1 jar包准备 3.2 通过API操作HDFS 3.2.1 HDFS获取文件系统 3.2.2 HDFS文件上传 3.2.3 HDFS文件下载 3.2.4 HDFS目录创建 3.2.5 HDFS文件夹删除 3.2.6 HDFS文件名更改 3.2.7 HDFS文件详情查看 3.2.8 HDFS文件夹查看 3.3 通过IO流操作…
大数据学习之BigData常用算法和数据结构 1.Bloom Filter     由一个很长的二进制向量和一系列hash函数组成     优点:可以减少IO操作,省空间     缺点:不支持删除,有误判     如果要支持删除操作: 改成计数布隆过滤器 2.SkipList(跳表)     核心思路: 由多层组成,每层都是一个有序链表,最底层包含所有元素,元素数逐层递减.每个节点包含两个指针,一个->,一个向下. 并行编程情况下可以用锁或者CAS操作.     CAS:     compare…
文章目录 大数据概论 一.大数据概念 二.大数据的特点 三.大数据能干啥? 四.大数据发展前景 五.企业数据部的业务流程分析 六.企业数据部的一般组织结构 Hadoop(入门) 一 从Hadoop框架讨论大数据生态 1.1 Hadoop是什么 1.2 Hadoop发展历史 1.3 Hadoop三大发行版本 1.4 Hadoop的优势 1.5 Hadoop组成 1.5.1 HDFS架构概述 1.5.2 YARN架构概述 1.5.3 MapReduce架构概述 1.6 大数据技术生态体系 1.7 推…
文章目录 一.Linux入门概述 1.1 概述 1.2 下载地址 1.3 Linux特点 1.4 Linux和Windows区别 二.VM安装相关 2.1 安装VMWare虚拟机 2.2 安装CentOS 2.3 安装VMTools工具 2.4 虚拟机屏幕保护设置 2.5 IVT虚拟化支持 三.Linux目录结构 3.1 概览 3.2 树状目录结构 四.VI/VIM编辑器 4.1 概述 4.2 测试数据准备 4.3 一般模式 4.4 编辑模式 4.5 指令模式 五.系统管理操作 5.1 查看网络…
一.Linux lucene: 全文检索引擎的架构 solr: 基于lucene的全文搜索服务器,实现了可配置.可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面. 推荐一个大数据学习群 142974151每天晚上20:10都有一节[免费的]大数据直播课程,专注大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数据挖掘都是纯干货分享, 二.Hadoop HDFS: 分布式存储系统,包含NameNode,DataNode.NameNode:元数据,DataNode.Data…
部署规划 HBase全称叫Hadoop Database,它的数据存储在HDFS上.我们的实验环境依然基于上个主题Hive的配置,参考大数据学习(11)-- Hive元数据服务模式搭建. 在此基础上,增加HBase的部署规划.我感觉这8G的内存马上要跑不动了. 主机 RegionServer Master server01  •   server02  •   server03  • • 安装HBase 把HBase解压到/usr目录下,版本是2.26. [root@server01 home]…