1703: [Usaco2007 Mar]Ranking the Cows 奶牛排名 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 323  Solved: 238[Submit][Status][Discuss] Description     农夫约翰有N(1≤N≤1000)头奶牛,每一头奶牛都有一个确定的独一无二的正整数产奶率.约翰想要让这些奶牛按产奶率从高到低排序.    约翰已经比较了M(1≤M≤10000)对奶牛的产奶率,但他发现,他还需…
Description     农夫约翰有N(1≤N≤1000)头奶牛,每一头奶牛都有一个确定的独一无二的正整数产奶率.约翰想要让这些奶牛按产奶率从高到低排序.    约翰已经比较了M(1≤M≤10000)对奶牛的产奶率,但他发现,他还需要再做一张关于另外C对奶牛的产奶率比较,才能推断出所有奶牛的产奶率排序.请帮他确定C的最小值. Input     第1行包含两个用空格分开的整数N和M.接下来M行,每行有两个用空格分开的整数X和Y(1≤X,y≤1000),表示奶牛X的产奶率高于奶牛Y. Out…
把关系变成有向边,稍微想一下就是要求在有向图中不能到达的点对个数,这个可以用Floyd传递闭包来做,但是n^3的复杂度跑不了1000 考虑bitset优化! 因为传递过程只会出现0和1,用bitset完全没问题,而且重要的是bitset可以进行位运算,一下转移一整行:如果j能到i,也能到i能到的所有点,直接用"|"位运算转移即可 #include<iostream> #include<cstdio> #include<bitset> using na…
[题意]给定n头牛和m对大小关系,求最坏情况下至少还需要比较几对奶牛的大小(在未确定顺序的奶牛对中随机比较) [算法]floyd求传递闭包 [题解]可达说明大小已知,则不可达点对数量就是最少比较次数. 使用bitset优化传递闭包,复杂度O(n^3 /32). #include<cstdio> #include<bitset> #include<algorithm> using namespace std; ; int n,m; bitset<maxn>b[…
n<=1000头牛各有一个未知值Ai,已知m<=10000条形如Ax>Ay的不等关系,求将整个序列排序的最少比较次数. Aa>Ab,Ab>Ac -------> Aa>Ac,传递性,因此按m条不等关系连边建图,求出传递闭包,就是已知的关系. 求出传递闭包中的i≠j的0的个数即可.错误!连的图是有向图,而已知大于关系后其实另一边已知一个小于关系,所以用n*n,减去1的个数*2,再减(i,j),i=j的n个,再除以2得到答案. n3不可接受,因此用bitset优化fl…
[题目大意] 农夫约翰有N(1≤N≤1000)头奶牛,每一头奶牛都有一个确定的独一无二的正整数产奶率.约翰想要让这些奶牛按产奶率从高到低排序,约翰已经比较了M(1≤M≤10000)对奶牛的产奶率,但他发现,他还需要再做一张关于另外C对奶牛的产奶率比较,才能推断出所有奶牛的产奶率排序.请帮他确定C的最小值. [思路] 对于M对关系,从产奶率高的往产奶率低的连一条有向边.对于每个节点i,它能抵达的节点的总数即是能比较得出的比它小的奶牛总数. 由于原本总共有N*(N-1)/2对关系,ans=N*(N-…
[Usaco2007 Mar]Ranking the Cows 奶牛排名 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 504  Solved: 343[Submit][Status][Discuss] Description     农夫约翰有N(1≤N≤1000)头奶牛,每一头奶牛都有一个确定的独一无二的正整数产奶率.约翰想要让这些奶牛按产奶率从高到低排序.    约翰已经比较了M(1≤M≤10000)对奶牛的产奶率,但他发现,他还需要再做一张关…
1637: [Usaco2007 Mar]Balanced Lineup Time Limit: 5 Sec  Memory Limit: 64 MB Description Farmer John 决定给他的奶牛们照一张合影,他让 N (1 ≤ N ≤ 50,000) 头奶牛站成一条直线,每头牛都有它的坐标(范围: 0..1,000,000,000)和种族(0或1). 一直以来 Farmer John 总是喜欢做一些非凡的事,当然这次照相也不例外.他只给一部分牛照相,并且这一组牛的阵容必须是"…
将 0 变为 -1 , 则只需找区间和为 0 , 即前缀和相同的最长区间 , 记录一下每个前缀和出现的最早和最晚的位置 , 比较一下就 OK 了 ------------------------------------------------------------------------------------------- #include<cstdio> #include<algorithm> #include<cstring> #include<iostr…
贪心...先枚举k, 然后从左往右扫一遍, 发现位置p的牛的状态不符合就将 [p, p + k ) 的牛都转身, 假如p + k - 1 已经超过了最右边牛的位置那这个k就不符合要求. 符合要求的就可以用来更新answer.这个贪心的正确性是很显然的.前p - 1头牛都已朝前, 再改动它们也做不到更优; 而要让第p头牛转身, 那就只能让[p, p + k )的牛转身. 考虑如何判断位置p的牛的状态, 我们发现p的状态与它本身和[ p - k - 1, p )这个区间内的牛的转身次数有关, 因为转…