原来我一开始以为的\( O(n^2) \)是调和级数\( O(nlog_2n) \)的! 首先枚举猴王的桃子个数\( x \),然后使用容斥原理,枚举有至少\( k \)个不满足的条件,那么这\( k \)个不满足的条件得组合个数为\( C_{m-1}^{k} \),这\( k \)个不满足的条件每个至少是\( x+1 \),在总的桃子个数中去掉不满足条件的\( k \)个\( x+1 \),然后在剩下的桃子中使用隔板法,方案数为\( C_{n-(k+1)*x+m-2}^{m-2} \) 那么就…
Problem Description Once in a forest, there lived N aggressive monkeys. At the beginning, they each does things in its own way and none of them knows each other. But monkeys can't avoid quarrelling, and it only happens between two monkeys who does no…
As everyone known, The Monkey King is Son Goku. He and his offspring live in Mountain of Flowers and Fruits. One day, his sons get n peaches. And there are m monkeys (including GoKu), they are numbered from 1 to m, GoKu’s number is 1. GoKu wants to d…
Monkey King Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4714    Accepted Submission(s): 2032 Problem Description Once in a forest, there lived N aggressive monkeys. At the beginning, they e…
并查集+左偏树.....合并的时候用左偏树,合并结束后吧父结点全部定成树的根节点,保证任意两个猴子都可以通过Find找到最厉害的猴子                       Monkey King Time Limit: 10000MS   Memory Limit: 32768KB   64bit IO Format: %lld & %llu [Submit]   [Go Back]   [Status] Description Once in a forest, there lived…
题目地址:P1456 Monkey King 一道挺模板的左偏树题 不会左偏树?看论文打模板,完了之后再回来吧 然后你发现看完论文打完模板之后就可以A掉这道题不用回来了 细节见代码 #include <bits/stdc++.h> using namespace std; const int N = 1e5 + 6; int n, m, f[N], a[N], l[N], r[N], d[N]; //类并查集路径压缩 int get(int x) { if (x == f[x]) return…
我们知道如果要我们给一个序列排序,按照某种大小顺序关系,我们很容易想到优先队列,的确很方便,但是优先队列也有解决不了的问题,当题目要求你把两个优先队列合并的时候,这就实现不了了 优先队列只有插入 删除 取数的操作,但是却没有合并两个优先队列的操作. 这也是它的局限所在. 本次要介绍的左偏树拥有优先队列的所有功能,同时它还可以合并操作.  树的复杂度都比较低,一般log(n)就够了,左偏树也是如此,左偏树如果一个个结点暴力插入复杂度最大为nlog(n) 还有一种仿照二叉树的算法,这里不做介绍. …
题目描述 JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产. 例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的分配方法: A:麻花,B:麻花.包子 A:麻花.麻花,B:包子 A:包子,B:麻花.麻花 A:麻花.包子,B:麻花 输入 输入数据第一行是同学的数量…
Monkey King Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 6667    Accepted Submission(s): 2858 Problem Description Once in a forest, there lived N aggressive monkeys. At the beginning, they e…
[luogu5339] [TJOI2019]唱.跳.rap和篮球(容斥原理+组合数学)(不用NTT) 题面 略 分析 首先考虑容斥,求出有i堆人讨论的方案. 可以用捆绑法,把每堆4个人捆绑成一组,其他人每个人一组.这样一共有\(n-3i\)组(这些组可以被看成相同的点). 我们从中选出n-4i个点,这些点展开成1个人,其他\(i\)个点展开成4个人.那么方案数就是\(C_{n-3i}^{n-4i}\) 由于\(i\)堆人的喜好已经确定,最终答案为\(\sum_{i=0}^n (-1)^i \ti…