scikit-learn 机器学习工具】的更多相关文章

转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 载入…
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉验证 交叉验证用于评估模型性能和进行参数调优(模型选择).分类任务中交叉验证缺省是采用StratifiedKFold. sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jo…
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.…
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk…
IEEE Spectrum排行榜第一,Skill UP排名第一的开发工具,Stack Overflow年度调查中程序员最感兴趣的选择,Stack Overflow 6月份访问量最多的编程语言......没错,这些盛誉都指向了一个编程语言--Python. Python在科学计算中用途广泛:计算机视觉.人工智能.数学.天文等.它同样适用于机器学习也是意料之中的事.这里将列举并描述Python的最有用的机器学习工具和库. 另外,尽管有些模块可以用于多种机器学习任务,在这里只列出主要焦点在机器学习的库…
本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法.这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用.Weka包括一系列的工具,如数据预处理.分类.回归.聚类.关联规则以及可视化. 2.Massive Online Analysis(MOA)是一个面向数据流挖掘的流行开源框架,有着非常活跃的成长社区.它包括一系列的机器学习算法(分类.回归.聚类.异常检测.概念漂移检测和推荐系统)和评估工具.关联了WEKA项目,MOA也是用Java编写的,其…
微软开源自动机器学习工具 – NNI安装与使用   在机器学习建模时,除了准备数据,最耗时耗力的就是尝试各种超参组合,找到最佳模型的过程了.对于初学者来说,常常是无从下手.即使是对于有经验的算法工程师和数据科学家,也是很难把握所有的规律,只能多次尝试,找到较好的超参组合.而自动机器学习这两年成为了热门领域,它将机器学习过程中包括自动特征提取.模型选择.参数调节等过程自动化地学习,使学习过程在给定数据和任务上学习和泛化能力非常强大.NNI (Neural Network Intelligence)…
[重磅]微软开源自动机器学习工具 - NNI 在机器学习建模时,除了准备数据,最耗时耗力的就是尝试各种超参组合,找到模型最佳效果的过程了.即使是对于有经验的算法工程师和数据科学家,有时候也很难把握其中的规律,只能多次尝试,找到较好的超参组合.而对于初学者来说,要花更多的时间和精力. 自动机器学习这两年成为了热门领域,着力解决超参调试过程的挑战,通过超参选择算法和强大的算力来加速超参搜索的过程. NNI (Neural Network Intelligence) 是微软开源的自动机器学习工具.与当…
微软推 Azure 机器学习工具:Algorithm Cheat Sheet [日期:2015-05-15] 来源:CSDN  作者:Linux [字体:大 中 小]   Azure Machine Learning Studio 有着大量的机器学习算法,现在你可以使用它来构建预测分析解决方案.这些算法可用于一般的机器学习:回归分析.分类.聚类和异常检测,且每一个都可以解决不同类型的机器学习问题. 现在的问题是,是否有什么工具之类的东西可帮助找出如何选择一个合适的机器学习算法,并根据具体的方案?…
本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法.这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用.Weka包括一系列的工具,如数据预处理.分类.回归.聚类.关联规则以及可视化. 2.Massive Online Analysis(MOA)是一个面向数据流挖掘的流行开源框架,有着非常活跃的成长社区.它包括一系列的机器学习算法(分类.回归.聚类.异常检测.概念漂移检测和推荐系统)和评估工具.关联了WEKA项目,MOA也是用Java编写的,其…
转自:http://www.cnblogs.com/data2value/p/5419864.html 本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法.这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用.Weka包括一系列的工具,如数据预处理.分类.回归.聚类.关联规则以及可视化. 2.Massive Online Analysis(MOA)是一个面向数据流挖掘的流行开源框架,有着非常活跃的成长社区.它包括一系列的机器学习算法(分类.回归…
NNI (Neurol Network Intelligence) 是微软开源的自动机器学习工具 https://www.cnblogs.com/ms-uap/p/9719071.html [重磅]微软开源自动机器学习工具 - NNI 在机器学习建模时,除了准备数据,最耗时耗力的就是尝试各种超参组合,找到模型最佳效果的过程了.即使是对于有经验的算法工程师和数据科学家,有时候也很难把握其中的规律,只能多次尝试,找到较好的超参组合.而对于初学者来说,要花更多的时间和精力. 自动机器学习这两年成为了热…
本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法.这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用.Weka包括一系列的工具,如数据预处理.分类.回归.聚类.关联规则以及可视化. 2.Massive Online Analysis(MOA)是一个面向数据流挖掘的流行开源框架,有着非常活跃的成长社区.它包括一系列的机器学习算法(分类.回归.聚类.异常检测.概念漂移检测和推荐系统)和评估工具.关联了WEKA项目,MOA也是用Java编写的,其…
[重磅]微软开源自动机器学习工具 - NNI 在机器学习建模时,除了准备数据,最耗时耗力的就是尝试各种超参组合,找到模型最佳效果的过程了.即使是对于有经验的算法工程师和数据科学家,有时候也很难把握其中的规律,只能多次尝试,找到较好的超参组合.而对于初学者来说,要花更多的时间和精力. 自动机器学习这两年成为了热门领域,着力解决超参调试过程的挑战,通过超参选择算法和强大的算力来加速超参搜索的过程. NNI (Neural Network Intelligence) 是微软开源的自动机器学习工具.与当…
来自:开源最前线(ID:OpenSourceTop) 综合自:AI前线.https://github.com/sql-machine-learning/sqlflow 5月6日,蚂蚁金服副 CTO 胡喜正式宣布开源机器学习工具 SQLFlow:“未来三年,AI 能力会成为每一位技术人员的基本能力.我们希望通过开源 SQLFlow,降低人工智能应用的技术门槛,让技术人员调用 AI 像 SQL 一样简单.” 目前,SQLFlow已经在GitHub上获得1636个Star,236个Fork.(GitH…
一   安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=834b2904f92d46aaa333267fb1c922bb" --no-check-certificate# tar -xzvf pip-1.5.4.tar.gz# cd pip-1.5.4# python setup.py install 输入pip如果能看到信息证明安装成功. 安装scikit…
scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习问题一般可以分为: 监督学习(supervised learning) 分类(classification) 回归(regression) 非监督学习(unsupervised learning) 聚类(clustering) 监督学习和非监督学习的区别就是,监督学习中,样本数据会包含要预测的标签(…
所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的垂直搜索引擎,专门为用户提供团购.优惠券的检索:同时存在一个通用的搜索引擎,比如百度,通用搜索引擎希望能够识别出一个Query是否具有O2O检索意图,如果有则调用O2O垂直搜索引擎,获取结果作为通用搜索引擎的结果补充. 我们的目的是学习出一个分类器(classifier),分类器可以理解为一个函数,…
scikit-learn是一个用于机器学习的 Python 模块. 其主页:http://scikit-learn.org/stable/. GitHub地址: https://github.com/scikit-learn/scikit-learn 在安装的时候,网友提供的方法是由easy_install安装.我以前安装其他库时都是运行windows exe安装的.那么scikit-learn也可以通过windows可执行文件安装.http://www.lfd.uci.edu/~gohlke/…
1.数据标准化(Standardization or Mean Removal and Variance Scaling) 进行标准化缩放的数据均值为0,具有单位方差. from sklearn import preprocessing X = [[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]] X_scaled = preprocessing.scale(X) print X_scaled #[[ 0. -1.22474487 1.33630621] #…
Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-learn with python. Following is the package version that I use below: The Python version: 3.6.2 The Numpy version: 1.8.0rc1 The Scikit-Learn version: 0.19…
线性.逻辑回归.input_fn()建立简单两个特征列数据,用特证列API建立特征列.特征列传入LinearClassifier建立逻辑回归分类器,fit().evaluate()函数,get_variable_names()得到所有模型变量名称.可以使用自定义优化函数,tf.train.FtrlOptimizer(),可以任意改动传到LinearClassifier. 随机森林.包含多个决策树分类器及回归算法.处理不平衡分类资料集,极大平衡误差.Kaggle数据科学竞赛,延伸版XGBoost.…
Windows下安装scikit-learn 准备工作 Python (>= 2.6 or >= 3.3), Numpy (>= 1.6.1) Scipy (>= 0.9), Matplotlib(可选). NumPy NumPy系统是Python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)). Scipy SciPy是一款方便.易于使用…
今天了解到sklearn这个库,简直太酷炫,一行代码完成机器学习. 贴一个自动生成数据,SVR进行数据拟合的代码,附带网格搜索(GridSearch, 帮助你选择合适的参数)以及模型保存.读取以及结果绘制. from sklearn.svm import SVR from sklearn.externals import joblib from sklearn.model_selection import GridSearchCV import numpy as np import matplo…
介绍 Octave是一个旨在提供与MATLAB语法兼容的开放源代码计算与数值分析的工具:同时也是GNU成员之一.Octave最初的设计以MATLAB为模板,在功能上与MATLAB有许多相似之处.但相较于MATLAB Octave占用的内存空间更少,更重要的是Octave是一款开源的项目,对于需要数值分析等操作的但又不愿意花大量的金钱购买MATLAB的用户来说,Octave是一个很不错的选择. 下载地址 wiki https://wiki.octave.org/Octave_for_Microso…
1.http://scikit-learn.org/stable/        官网:关于scikit-learn介绍等 2. http://stackoverflow.com/questions/tagged/scikit-learn   stackoverflow下使用scikit-learn出现错误的解决方式 3.http://scikit-learn.org/stable/documentation.html     学习工具教程 未完待续…
答案在这里:http://www.tuicool.com/articles/U3uiiu http://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction…
官方网站链接 sklearn.neighbors.KNeighborsClassifier sklearn.tree.DecisionTreeClassifier sklearn.naive_bayes.MultinomialNB sklearn.linear_model.LogisticRegression sklearn.svm.SVC   Home Installation Documentation Scikit-learn 0.20.2 (stable) Tutorials User…
Voting classifier 多种分类器分别训练,然后分别对输入(新数据)预测/分类,各个分类器的结果视为投票,投出最终结果: 训练: 投票: 为什么三个臭皮匠顶一个诸葛亮.通过大数定律直观地解释: 一个硬币P(H)=0.51.大数定律保证抛硬币很多次之后,平均得到的正面频数接近\(0.51 \times N\),并且N越大,越接近.那么换个角度,N表示同时掷硬币的人数,即为这边的N个臭皮匠,他们的结果合到一起就得到的是接近真实结果的值. 进一步根据中心极限定理,即二项分布以正态分布为其极…