POJ 2142 TheBalance 模线性方程求解】的更多相关文章

题目大意: 就是将两种砝码左右摆放,能够在物品放置在天平上时保持平衡 很容易得到 ax + by = t的模线性方程 按题目要求,希望首先满足 |x| + |y| 最小 , 如果有多种情况,再满足所有砝码质量最小,也就是a|x| + b|y|最小 x = x0 + b/g * k y = y0 - a/g * k 这里可以通过画一个2维坐标图进行观察 x , y 对于k的直线,我假定 b > a ,初始如果 a>b就交换两者数据,记得最后答案交换回来 因为a,b为砝码重量都大于0 所以x是递增…
简单的扩展欧几里得题 这里 2^k 不能自作聪明的用 1<<k来写 , k >= 31时就爆int了 , 即使定义为long long 也不能直接这样写 后来老老实实 for(int i=1 ; i<=k ; i++) bb = bb*2; 才过了= = #include <cstdio> #include <cstring> using namespace std; #define ll long long ll ex_gcd(ll a , ll &…
Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 8005   Accepted: 2378 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is…
d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时,变量variable则只在0~15之间循环变化. s.扩展欧几里德求解模线性方程(线性同余方程). 设循环次数为x, 1.(A+C*x)mod 2^k=B. --> C*x=B-A(mod 2^k). (怎么变来的?) 2.C*x=B-A(mod 2^k). --> C*x+(2^k)*y=B-…
C Looooops DescriptionA Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != B; variable += C) statement;I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repea…
http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思路: 根据题意原题可化成c * x = b - a mod (2 ^ k),然后解这个模线性方程. #include<iostream> #include<algorithm> #include<cstring> #include<cstdio> #includ…
题目链接:http://poj.org/problem?id=2115 C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22912   Accepted: 6293 Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != B; vari…
http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化成 c*x = b-a mod (2^k), 解这个模线性方程的最小正整数解. 模板题,代码很短,但是很难理解的样子...转载了一些有关的资料... #include <stdio.h> #define LL long long LL Extend_Euclid(LL a,LL b,LL &…
题意:很明显,我就不说了 分析:令n=2^k,因为A,B,C<n,所以取模以后不会变化,所以就是求(A+x*C)%n=B 转化一下就是求 C*x=B-A(%n),最小的x 令a=C,b=B-A 原式等于ax=b(mod n) 这就是标准的解模线性方程 该方程有解的充要条件是d=gcd(n,a) && d|b(可以根据这一条判断是否FOREVER) 然后参考算法导论应用扩展欧几里得求解x a*x0+n*y0=d x=x0*(b/d)(mod n) 然后应用多解条件求最小正整数解,即解的…
http://poj.org/problem?id=2115 题意:对于C的循环(for i = A; i != B; i+=C)问在k位存储系统内循环多少次结束: 若循环有限次能结束输出次数,否则输出 FOREVER: 解:设x为循环次数:  (A+C*x)%2^k = B; 则 C*x+A = 2^k*y+B; 所以 C*x - 2^k*y = B-A; 类似于a*x+b*y = c (或 a*x = c(mod b))模线性方程的形式,所以可以根据扩展欧几里得算法解决 #include<s…
POJ.2142 The Balance (拓展欧几里得) 题意分析 现有2种质量为a克与b克的砝码,求最少 分别用多少个(同时总质量也最小)砝码,使得能称出c克的物品. 设两种砝码分别有x个与y个,那么有ax+by=c.可用拓展欧几里得求解. 若x与y均为正数,说明在天平的同一侧,否则在不同册. 需要注意的是,求出的x与y仅为一组特解,此时需要求|x| + |y| 的最小值.根据: 可得 显然这是不好求的,但我们不妨设a>b,根据斜率关系,不难作图. 可以看出,最小值在t2附近取得,枚举附近值…
一.求解模线性方程 由ax=b(mod n) 可知ax = ny + b 就相当于ax + ny = b 由扩展欧几里得算法可知有解条件为gcd(a, n)整除d 可以直接套用扩展欧几里得算法 最终由d个不同解时在模n下有d个不同的数字 二.中国剩余定理 证明可看:https://www.cnblogs.com/MashiroSky/p/5918158.html ll extgcd(ll a, ll b, ll& x, ll& y) //求解ax+by=gcd(a, b) //返回值为gc…
题目链接:http://poj.org/problem?id=2115 C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 27838   Accepted: 7930 Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != B; vari…
Description The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent toax≡1 (mod m). Input There are multiple test cases. The first line of input is an integer T ≍ 2000 indicating…
传送门:http://poj.org/problem?id=2947 Widget Factory Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 7109   Accepted: 2496 Description The widget factory produces several different kinds of widgets. Each widget is carefully built by a skill…
d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有解.对于不定整数方程pa+qb=c,若 c mod Gcd(p, q)=0,则该方程存在整数解,否则不存在整数解. 也就是说,d mod gcd(a,b)=0. a,b,d同时除以gcd(a,b)得到a'x+b'y=d'; 用扩展欧几里德求出 a'x+b'y=gcd(a',b')=1的解(x,y),…
题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctype.h> #inclu…
/* (x*c+a)%(2^k)==b →(x*c)%(2^k)==b-a 满足定理: 推论1:方程ax=b(mod n)对于未知量x有解,当且仅当gcd(a,n) | b. 推论2:方程ax=b(mod n)或者对模n有d个不同的解,其中d=gcd(a,n),或者无解. 定理1:设d=gcd(a,n),假定对整数x和y满足d=ax+by(比如用扩展Euclid算法求出的一组解). 如果d | b,则方程ax=b(mod n)有一个解x0满足x0=x*(b/d) mod n .特别的设e=x0+…
不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostream> #include <stdio.h> #include <math.h> #include <string.h> #define SIZE 99991 /* POJ 3243 AC 求解同余方程: A^x=B(mod C) */ using namespace…
http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http://poj.org/problem?id=1753 http://poj.org/problem?id=3185 这几个题目都类似,都可以使用高斯消元来求解一个模2的01方程组来解决. 有时候需要枚举自由变元,有的是判断存不存在解 POJ 1222 EXTENDED LIGHTS OUT 普通的问题.…
介绍 程序SolveLinearEquations解决联立方程.该方案需要一个文本文件,其中包含输入和输出方程解决.这个项目是几年前我写在C#中http://www.codeproject.com/Articles/673076/Linear-Equation-Solver线性方程组求解.以外,这个程序没有图形用户界面和一个稍微修改公式格式,这个计划是非常类似于C#程序,该程序使用SparseArray模板类来实现向量和矩阵.矩阵使用DoubleIndex的类,这需要两个整数指数,实行单一的键使…
题目大意:给定A,k,m(取模),求解S = A + A2 + A3 + … + Ak. 思路:此题为求解幂的和,一开始直接一个个乘,TLE.时间消耗在累加上.此处巧妙构造新矩阵 p=    A 0 1 1 ,1 代表单位矩阵.那么p*p=A 0 A+1,1 p*p*p=A*A 0 A*A+A+1 1 那么最后求得的结果就是左下角的矩阵减去一个单位矩阵.最后需要注意的是若在简单为矩阵的时候结果为负数,那么为m-1; #include <iostream> #include <cstrin…
The Balance http://poj.org/problem?id=2142 Time Limit: 5000MS   Memory Limit: 65536K       Description Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a dose of medicine. For example, to measure 200mg of aspirin using 3…
嗯... 题目链接:http://poj.org/problem?id=2142 AC代码: #include<cstdio> #include<iostream> using namespace std; inline int _abs(int x){ ) return -x; return x; } inline void exgcd(int a, int b, int &g, int &x, int &y){ ; y = ;} else { exgcd…
/* poj 2187 Beauty Contest 凸包:寻找每两点之间距离的最大值 这个最大值一定是在凸包的边缘上的! 求凸包的算法: Andrew算法! */ #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; struct Point{ Point(){} Point(int x, int y){ this->…
取模运算 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10931   Accepted: 6618 Description 编写一个C函数mod(int n, int m),实现取模运算% Input 输入包含多行数据 每行数据是两个整数a, b (1 <= a, b <= 32767) 数据以EOF结束 Output 于输入的每一行输出a%b Sample Input 5 3 100 2 Sample Output…
题目链接: http://poj.org/problem?id=1258 Description Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course. Farmer John ordered a high speed…
题目大意: f[k] = ∑a[i]*k^i % p 每一个f[k]的值就是字符串上第 k 个元素映射的值,*代表f[k] = 0 , 字母代表f[k] = str[i]-'a'+1 把每一个k^i求出保存在矩阵中,根据字符串的长度len,那么就可以得到len行的矩阵,利用高斯消元解决这个线性方程组 #include <cstdio> #include <cstring> #include <iostream> using namespace std; ; //a[i]…
首先,可以知道题目要求解一个\(ax+by=c\)的方程,且\(x+y\)最小. 感性证明: 当\(a>b\)时,\(y\)取最小正整数解,\(b\)减的多,\(a\)增的少,此时\(x+y\)取最小值.(类似比热容与温度之间) 反之亦然. #include<iostream> #include<cmath> #include<cstdlib> using namespace std; int a, b, c; int exgcd(int a, int b, in…
#include <cstdio> #include <algorithm> #include <cstring> #include <iostream> using namespace std; int a,b,c; int exgcd(int a,int b,int &x,int &y){ ){ x = ; y = ; return a; } int d = exgcd(b,a%b,x,y); int temp = x; x = y; y…