bzoj 3759 Hungergame 博弈论+线性基】的更多相关文章

和nim游戏类似 易证必败状态为:当前打开的箱子中石子异或和为0,没打开的箱子中不存在一个子集满足异或和为0 因为先手无论是取石子还是开箱子,后手都可以通过取石子来使状态变回原状态 所以只需判定是否有子集异或和等于零即可 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<cmath> using namespace std; int…
LINK:Hungergame 放上一道简单题 复习一下. 考虑每次可以打开任意多个盒子 如果全打开了 那么就是一个NIM游戏了. 如果发现局面是异或为0的时候此时先手必胜了. 考虑局面不全体异或为0的情况 先手开始翻了若干个盒子. 考虑这些盒子的石头异或是否为0 因为这样是判断后手是否为当前局面NIM游戏的先手. 如果异或不为0 那么先手可以当当前所有翻开的石头的先手了. 如果接下来任意翻开的盒子下面都没有异或为0的 那么后手永远是NIM游戏的先手. 可以发现这样的局面当前仅当在这个局面中所有…
学了新的忘了旧的,还活着干什么 题意:一些盒子,每步可选择打开盒子和取出已打开盒子的任意多石子,问先手是否必胜 搬运po姐的题解: 先手必胜的状态为:给出的数字集合存在一个异或和为零的非空子集,则先手必胜 证明: 首先我们有状态A:当前的所有打开的箱子中的石子数异或和为零,且所有关闭的箱子中的石子数的集合中不存在一个异或和为零的非空子集 易证A状态时先手必败 先手有两种操作: 1.从一个打开的箱子中拿走一些石子 那么根据Nim的结论 后手可以同样拿走一些石子使状态恢复为A状态 2.打开一些箱子…
[题目分析] 显然,一个路径走过两边是不需要计算的,所以我么找到一条1-n的路径,然后向该异或值不断异或简单环即可. 但是找出所有简单环是相当复杂的,我们只需要dfs一遍,找出所有的环路即可,因为所有的简单环都可以经过各种各样的异或得到. 然后线性基,在从高位向低位贪心即可,至于证明,需要拟阵的相关知识. [代码] #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath>…
[题目分析] 线性基,由于最多有63个,只需要排序之后,动态的去维护线性基即可. [代码] #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <set> #include <map> #include <string> #include <algorithm> #include <vector…
一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一下序,从大到小求. #include<iostream> #include<cstdio> #include<cstring> #include<queue> #include<cmath> #include<algorithm> #in…
题目链接 \(Description\) 给定一张无向带边权图(存在自环和重边).求一条1->n的路径,使得路径经过边的权值的Xor和最大.可重复经过点/边,且边权和计算多次. \(Solution\) 来找一些性质.从一个点出发,到达任意一个点后原路返回,那么得到的和仍为0.但是如果走完一个环后原路返回,则会得到这个环的Xor和. 那么从1点就可以得到任何一个环的Xor和.我们还需要一条1->n的路径,使得搭配上某些环后答案最大.于是我们就可以对环的权值构造线性基,拿路径Xor和在上面求最大…
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2460 题意: 给你一堆矿石,矿石有a,b两种性质,取任意个矿石,满足取得的这些矿石a性质异或和不为0,且b性质和最大,求b性质和的最大值. 思路: 线性基模板题, 根据线性基的性质: 线性基的任意一个子集异或和不为0.我们可以根据这些矿石的b性质从大到小排序,依此将这些矿石的a性质插到线性基里,如果能够插入的话就选这个,不能插入的话就不选. 实现代码: #include<bits/stdc…
https://www.lydsy.com/JudgeOnline/problem.php?id=2115 每一条从1到n的道路都可以表示为一条从1到n的道路异或若干个环的异或值. 那么把全部的环丢到线性基里基本操作就可以了.. https://blog.csdn.net/qaq__qaq/article/details/53812883 这个博客非常好 #include<iostream> #include<cstdio> #include<algorithm> #i…
题目链接 线性基:https://blog.csdn.net/qq_36056315/article/details/79819714. \(Description\) 求一组矿石,满足其下标异或和不为0,且价值和最大. \(Solution\) 按价值从大到小依次插入线性基,这样最后得到的集合就是价值和最大的了. 贪心策略简单证明(参考:https://www.cnblogs.com/acmsong/p/7508022.html): 假设当前选取的集合\(S\)价值为\(\{v1,v2,...…