一.目标函数的梯度求解公式 PCA 降维的具体实现,转变为: 方案:梯度上升法优化效用函数,找到其最大值时对应的主成分 w : 效用函数中,向量 w 是变量: 在最终要求取降维后的数据集时,w 是参数: 1)推导梯度求解公式 变形一 变形二 变形三:向量化处理 最终的梯度求解公式:▽f = 2 / m * XT . (X . dot(w) ) 二.代码实现(以二维降一维为例) 1)模拟数据 import numpy as np import matplotlib.pyplot as plt X…
主成分分析(Principal Component Analysis) 一个非监督的机器学习算法 主要用于数据的降维 通过降维,可以发现更便于人类理解的特征 其他应用:可视化.去噪 通过映射,我们可以把数据从二维降到一维: 显然,右边的要好一点,因为间距大,更容易看出差距. 如何定义样本间距?使用方差,因为方差越小,数据月密集,方差越大,数据月分散. 另均值为0: 因为均值为0,w是单位向量,模为1,所以: 梯度上升法求解PCA问题 分析:X是mn的矩阵,m是样本数,n是特征数,X^(i)是第i…
一.什么是PCA 主成分分析 Principal Component Analysis 一个非监督学的学习算法 主要用于数据的降维 通过降维,可以发现更便于人类理解的特征 其他应用:可视化:去噪 第一步:将样例的均值归零(demean) 二.使用梯度上升法求解PCA问题 梯度上升法解决主成分分析问题 三.求数据的主成分PCA 四.求数据的主成分 PCA 求数据的前 N 个主成分 求出第一个主成分以后,如何求出下一个主成分? 数据进行改变,将数据在第一个主成分的分量去掉. 我写的文章只是我自己对b…
(一)什么是pca pca,也就是主成分分析法(principal component analysis),主要是用来对数据集进行降维处理.举个最简单的例子,我要根据姓名.年龄.头发的长度.身高.体重.皮肤的白皙程度(随便想的)等特征来预测一个人的性别,但这些特征中有一个是最没有用的,是什么的?显然是年龄,因为年龄的大小跟这个人的性别无关.还有姓名,这个特征显然起不到决定性作用,因为有的男孩的名字起的就像女孩(比如我本人),反之亦然,但是起码绝大多数情况还是能判断的.同理还有身高,一个180CM…
五.高维数据映射为低维数据 换一个坐标轴.在新的坐标轴里面表示原来高维的数据. 低维 反向 映射为高维数据 PCA.py import numpy as np class PCA: def __init__(self, n_components): """初始化PCA""" assert n_components >= 1, "n_components must be valid" self.n_components =…
主成分分析法:主要作用是降维 疑似右侧比较好? 第三种降维方式: 问题:????? 方差:描述样本整体分布的疏密的指标,方差越大,样本之间越稀疏:越小,越密集 第一步: 总结: 问题:????怎样使其最大 变换后: 最后的问题:???? 注意区别于线性回归  使用梯度上升法解决PCA问题: import numpy as np import matplotlib.pyplot as plt from sklearn import datasets digits = datasets.load_d…
14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.5重建压缩表示 Reconstruction from Compressed Representation 使用PCA,可以把 1000 维的数据压缩到100 维特征,或将三维数据压缩到一二维表示.所以,如果如果把PCA任务是一个压缩算法,应该能回到这个压缩表示之前的形式,回到原有的高维数据的一种近似.下图是使用PCA将样本\(x^{(i)}映射到z^{(i)}\)上 即是否能通过某种方法将z上的点重新恢复成使用\(x_{…
求数据的第一主成分 (在notebook中) 将包加载好,再创建出一个虚拟的测试用例,生成的X有两个特征,特征一为0到100之间随机分布,共一百个样本,对于特征二,其和特征一有一个基本的线性关系(为什么要有一个基本的线性关系?是因为含有一个基本的线性关系,这样对数据降维的效果会更加的明显) import numpy as np import matplotlib.pyplot as plt X = np.empty((100,2)) X[:,0] = np.random.uniform(0. ,…
求数据前n个主成分并进行高维数据映射为低维数据的操作 求数据前n个主成分 先前的将多个样本映射到一个轴上以求使其降维的操作,其中的样本点本身是二维的样本点,将其映射到新的轴上以后,还不是一维的数据,对于n维数据来说,他应该有n个轴,第一个轴是方差最大的,第二个轴次之,以此类推,可以将主成分分析法看做是将数据从一个坐标系转换到另一个坐标系中 那么在求出第一主成分以后,如何求出下一个主成分呢?我们可以对数据进行改变来达到这个效果,即将数据在第一主成分上的分量给去掉 先前的Xi点乘上w以后是等于Xpr…
load spectra; temp = randperm(size(NIR, 1)); P_train = NIR(temp(1:50),:); T_train = octane(temp(1:50),:); P_test = NIR(temp(51:end),:); T_test = octane(temp(51:end),:); [PCALoadings,PCAScores,PCAVar] = princomp(NIR); figure percent_explained = 100 *…