2 Natural Language Processing & Word Embeddings 2.1 Word Representation(单词表达) vocabulary,每个单词可以使用1-hot表示,写作\(O^{5391}\)之类,上标可以变.只是用1-hot,不能知道任意两个单词的关系,例如man/woman;king/queen;apple/orange. 特征化表示:词嵌入(Featurized representation:word embedding).一个特征,使用-1到…
Lesson 5 Sequence Models 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第五门课程的课程笔记. 参考了其他人的笔记继续归纳的. 符号定义 假如我们想要建立一个能够自动识别句中人名地名等位置的序列模型,也就是一个命名实体识别问题,这常用于搜索引擎.命名实体识别系统可以用来查找不同类型的文本中的人名.公司名.时间.地点.国家名和货币名等等. 我们输入语句 "Harry Potter and Herminoe Granger invented a new s…
Neural Machine Translation Welcome to your first programming assignment for this week! You will build a Neural Machine Translation (NMT) model to translate human readable dates ("25th of June, 2009") into machine readable dates ("2009-06-25…
Sequence to Sequence models basic sequence-to-sequence model: basic image-to-sequence or called image captioning model: but there are some differences between how you write a model like this to generate a sequence, compared to how you were synthesizi…
Sequence Models This is the fifth and final course of the deep learning specialization at Coursera which is moderated by deeplearning.ai Here are the course summary as its given on the course link: This course will teach you how to build models for n…
LSTM’s in Pytorch Example: An LSTM for Part-of-Speech Tagging Exercise: Augmenting the LSTM part-of-speech tagger with character-level features Sequence models are central to NLP: they are models where there is some sort of dependence through time be…