题面 有两个长为 n n n 的序列 a a a 和 b b b,至多反转 a a a 的一个子区间,最大化 ∑ i = 1 n a i ⋅ b i \sum_{i=1}^na_i\cdot b_i ∑i=1nai⋅bi 并输出这个值. 1 ≤ n ≤ 5000 1\leq n\leq5000 1≤n≤5000,答案不会爆 long long. 题解 绝大部分人都在考场上用的是官方题解的做法,基本没有什么别的做法了,如果有,那估计就是提交榜单最末尾那些1900+ ms的做法吧. 数据非常小…
In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. Each subarray will be of size k, and we want to maximize the sum of all 3*k entries. Return the result as a list of indices representing the starting p…
[抄题]: In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. Each subarray will be of size k, and we want to maximize the sum of all 3*k entries. Return the result as a list of indices representing the star…
题目如下: Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M. (For clarification, the L-length subarray could occur before or after the M-length subarra…
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 39599 Accepted: 12370 Description Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below: Your task is to calculate d(A). Input The input consists o…
1146. Maximum Sum Time limit: 0.5 secondMemory limit: 64 MB Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this p…
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&page=show_problem&problem=44 Maximum Sum Background A problem that is simple to solve in one dimension is often much more difficult to solve in more th…
Maximum Sum 大意:给你一个n*n的矩阵,求最大的子矩阵的和是多少. 思路:最開始我想的是预处理矩阵,遍历子矩阵的端点,发现复杂度是O(n^4).就不知道该怎么办了.问了一下,是压缩矩阵,转换成最大字段和的问题. 压缩行或者列都是能够的. int n, m, x, y, T, t; int Map[1010][1010]; int main() { while(~scanf("%d", &n)) { memset(Map, 0, sizeof(Map)); for(i…
1146. Maximum Sum Time limit: 1.0 second Memory limit: 64 MB Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this…